Problem 1. Show that there is a sequence of Reidemeister moves R_2 and R_3 transforming the diagram below into the standard diagram of the unknot.

(On each diagram, the fragment circled by () is modified by the move indicated over the next arrow).
Problem 2. Compute the 3-coloring invariant of the knot 6_2.

1) Let a, b, c be the colors of the three arcs meeting at the crossing 1.

2) Assume $a \neq b \neq c$. Then at crossing 2 we can determine the color of the remaining arc as b.

3) At crossing 3, all the arcs have color b.

4) Hence, same at crossing 4.

5) Crossing 5: $c = b$

6) Crossing 1 or 2: $a = c$.

Thus, $a = b = c$. \[\Rightarrow \text{There are only 3 (trivial) 3-colorings.} \]

(Another method is to set up the 6×6 matrix describing the crossings (which arcs meet at each crossing), then finding its row-reduced echelon form and determining nullity of the matrix. The number of 3-colorings is then 3^n nullity.)
Problem 3. Define the bracket polynomial of a link K as the polynomial in A, B, d such that

$$\langle K \rangle = \Sigma_\sigma \langle K|\sigma \rangle \cdot d^{|\sigma|},$$

where $\langle K|\sigma \rangle$ is the product of labels attached to the state σ.

1. Prove the relations:
 (a) $\langle K \cup O \rangle = d \cdot \langle K \rangle$;
 (b) $\langle \tau \rangle = A \cdot \langle \chi \rangle + B \cdot \langle \tau \rangle$.

2. Using these relations, prove that

$$\langle \Omega \rangle = A \cdot B \langle \tau \rangle + (A B d + A^2 + B^2) \langle \tau \rangle$$

See lecture notes.
Problem 4. Show (by any valid method) that 4_1 is ambient isotopic to its mirror image.

Method 1:
Find Reidemeister moves from 4_1 to 4_1, (see hw 1).

or

Method 2:
Compute the bracket polynomial and show (e.g., by using state sums, or the recurrence relation) that it is invariant under the change $A \leftrightarrow A^{-1}$.

or

Method 3:
Compute the Jones polynomial (using the skein relation) and show its invariance under $t \leftrightarrow t^{-1}$.
Problem 5. 1. What is the Jones polynomial of the connected sum of two knots? (Find $V_{K_1 \# K_2}(t)$ in terms of $V_{K_1}(t)$ and $V_{K_2}(t)$.)

2. Let T be the right trefoil. Given that $V_T(t) = t - t^3 - t^4$, compute the Jones polynomial of the following knot:

Method 1:
1. It is enough to prove that $\langle K_1 \# K_2 \rangle = \langle K_1 \rangle \cdot \langle K_2 \rangle$ (This implies that $V_{K_1 \# K_2} = V_{K_1} \cdot V_{K_2}$).

To show the statement for $\langle \rangle$, represent each of the states of $K_1 \# K_2$ in terms of the states of K_1 & K_2.

Method 2:
Use the skein relation of the Jones polynomial applied to the crossing "at the place where you take the connected sum."

Method 3:
Use induction on the number of crossings of K_2.

2. The given knot is the connected sum of 3 trefoils. Thus, $V_K = (t-t^3-t^4)^3$
Problem 6. Compute (inductively) the Jones polynomial of the \(n \)-component unlink.

\[t^{-1} - t = (\sqrt{E} - \frac{1}{\sqrt{E}}) V_{L_2} \]

\[V_{L_{\infty}} = (-\sqrt{E} - \frac{1}{\sqrt{E}}) = - (\sqrt{E} + \frac{1}{\sqrt{E}}) = - (\sqrt{E} + \frac{1}{\sqrt{E}}) V_{L_1} \]

Induction:
adding a component:

\[V_{L_n} = - V_{L_{n-1}} \cdot (\sqrt{E} + \frac{1}{\sqrt{E}}) \]

Thus,
\[V_{L_n} = (-1)^{n-1} (\sqrt{E} + \frac{1}{\sqrt{E}})^{n-1} \]