Consider a link with two components, \(\alpha \) and \(\beta \). Let \(\alpha \cap \beta \) denote the set of crossings of \(\alpha \) with \(\beta \) (not including self-crossings).

Then the linking number of \(\alpha \) and \(\beta \) is

\[
\text{lk} (\alpha, \beta) = \frac{1}{2} \sum_{c \in \alpha \cap \beta} \varepsilon (c)
\]

Thm. \(\text{lk} \) is an invariant.

(Check how it behaves under \(R_1, R_2, R_3 \).)

Ex. 1. The Hopf link: two distinct possible mutual orientations

\[
\begin{align*}
\text{lk} &= -1 \\
\text{lk} &= 1
\end{align*}
\]

\[
\begin{align*}
\text{lk} &= 0
\end{align*}
\]

\(l \Rightarrow \text{The Hopf link is not equivalent to 2-component unlink.} \)

2. The White head link:

\[
\text{lk} (\alpha, \beta) = \frac{1}{2} \cdot (1+1-1-1) = 0
\]

The linking number is 0, but, clearly, the diagram suggests that linking is non-trivial!
Def. **The crossing number** - minimal number of crossings that occurs in any diagram of the knot K. (So far, the only crossing number we can compute is that of the unknot.)

Operations on knots:

Mirror image: for a knot K, its mirror image is obtained by reflecting it in a plane in \mathbb{R}^3. (All such reflections are equivalent!)

On a diagram, this amounts to changing all crossings to the opposite ones. (This is just a reflection in the plane of the board:)

\[\begin{array}{c}
\includegraphics[width=0.15\textwidth]{mirror_image.png}
\end{array} \]

(We'll see that there is not eq. to its mirror image)

Reverse: the reverse of an oriented knot is the same knot with opposite orientation.

Connected sum of oriented knots: $K_1 \# K_2$ - oriented knots

Remove an arc from each, connect the ends to get a single component taking into account orientation.

\[\begin{array}{c}
\includegraphics[width=0.2\textwidth]{connected_sum.png}
\end{array} \]

is commutative;
\[\bigcirc \text{ is the identity, but there is no inverse. (This later) \Rightarrow under connected sum.} \]
§3. (The linking number of a Whitehead doubling.

Example: replace knot by two parallel copies (they can twist around each other in several different ways). Add a "clasp" to join the two resulting components:

\[\text{clasp.} \]

The linking numbers:

\[\text{lk} = -1 \quad (\text{Full negative twisting}) \]

\[\text{lk} = -1 \quad (\text{One copy}) \]

\[w = -1. \]

(This is similar to two arcs forming the edge of a belt)
8x. Build a link by adding a parallel strand to a knot:

\[\text{lk}(L) = 3. \]

If we add extra twisting, each full positive twist contributes +1.

\[T\left(\begin{array}{c}
\text{twisting}
\end{array}\right) = 1 \]

Thus, (Whitney) The linking number of parallel twisted strands is the sum of the writhe and the twisting:

\[\text{lk}(L) = w(K) + T(L) \]

(Note: one can now easily make up "linked" links with linking \(n = 0 \).)
3-colourings.

The number of 3-colourings of a knot is a simple computable invariant, which is defined in a combinatorial way.

Choose 3 colors to be a 3-colouring of a link. A diagram is a choice of colours for each of the arcs so that

(*) At each crossing, the three arcs that meet at the crossing are either all the same colour, or all three colours are used.

Let D be a diagram and $T(D)$ be the set of 3-colourings of this diagram.

Let $\tau(D)$ be the number of 3-colourings.

$\tau(D) = 3^k$, where k is the number of arcs.

Ex. 1. Standard diagram of unknot: $D = \bigcirc$

$\tau(D) = 3$.

Ex. 2. Standard diagram of the trefoil:

All three arcs meet at each of the three crossings.

$\tau(D) = 3 \cdot 3 \cdot 3 = 9$.

Ex. 3. 2-component unlink:

$\tau(D) = 3^2 = 9$.
5/4. The Hopf link (standard diagram)

\[D = \quad \tau(D) = 3. \]

Theorem. The number of 3-colourings is a link invariant (i.e., is independent of the choice of a diagram representing the link).

Proof. Need to check the behavior under the Reidemeister moves.

R1:

These ends have same color

\[\Rightarrow \]

Use this color here.

R2:

\[\begin{align*}
\text{if } a + b, & \quad \text{then } c \neq a + b; \\
\text{if } a = b, & \quad \text{then } c = a = b
\end{align*} \]

R3:

1) all colors are the same: use the same color on the r.h.s.
2) all colors are different: use the same colours.
3) \[g \begin{array}{c}
\text{if ends} \\
\text{are different}
\end{array} \]

Exercise:
Consider all cases.
Complete the proof.

Corollary. Trefoil is not eq. to the unknot.
8x. The Whitehead link.

2-component unlink:

Thus, everything has to be of the same color!

⇒ α distinguishes the Whitehead link from the 2-component unlink!
1. \(\lim_{x \to 0^+} \sin \frac{1}{x} \) (not an image of an injective map \(f : S^1 \to \mathbb{R}^2 \)) - not a knot (at the limit point \(* \) the derivative \(df \) is not defined).

2. \(\delta x \). Torus links:
 - \(p > 0, q \) are integers
 - form a cylinder with \(p \) strings along it:
 - twist it through \(\frac{q}{p} \) full twists:
 - connect the cylinder to become a torus:

3. Deformations of knots:
 - Knots: continuous maps \(f : S^1 \to \mathbb{R}^3 \)
 - Two knots are equivalent if the corresponding maps are homotopic:
 \(f_0 : S^1 \to \mathbb{R}^3, \ f_1 : S^1 \to \mathbb{R}^3 \)
 - are homotopic if \(\exists \) a cont. map \(F : S^1 \times I \to \mathbb{R}^3 \) s.t. \(F(t, 0) = f_0, \ F(t, 1) = f_1 \)
 - Not a good approach! All the knots are equivalent:

 But we don't want to consider these two as equivalent!
4. **Projections of knots:**

- **Regular:**

- **Irregular:**

 - or
 - by etc.

```
\[ \text{This can be resolved.} \]
```

Turns out that this irregularities can always be resolved (perturbed knot and change the direction of the proj.)