Consider minimizing \(f(x) \) for \(x \in S \) where \(S \) is the set of integers. Prove that every point in \(S \) is a local minimizer of \(f \).

Choose any \(y \in S \), and take \(\epsilon = \frac{1}{2} \). Now note: the set
\[
D = \{ x : x \in S \text{ and } \| x - y \| < \frac{\epsilon}{2} = \frac{1}{4} \}
\]
By the definition, \(y \) is a local minimizer if
\[
f(y) \leq f(x) \quad \forall x \in D
\]
and this is trivially true, since \(D \) consists of only the point \(y \). Thus \(y \) is a local minimizer.