120A Hwk 6

November 4, 2011

Homework problems due on Wednesday Nov. 9, 2011.

1. Let \(\alpha : (a, b) \to \mathbb{R}^3 \) be a unit speed curve with \(\kappa (s) \neq 0 \) for all \(s \in (a, b) \).

Define

\[
 f (s, t) = \alpha (s) + t\alpha' (s).
\]

Prove that \(f \) defines a parametrized surface as long as \(t \neq 0 \). Compute the first and second fundamental forms and show that the Gauss curvature \(K \) vanishes.

2. For a surface of revolution \(f (t, \theta) = (r (t) \cos (\theta), r (t) \sin (\theta), z (t)) \) compute the first and second fundamental forms and the principal curvatures.

3. Let \(f (u, v) \) be a parametrized surface. A tangent vector is a principal direction if it is an eigenvector for the Weingarten map. Show that \(\frac{\partial f}{\partial u} \) and \(\frac{\partial f}{\partial v} \) are the principal directions if \(g_{uv} = 0 = h_{uv}, \) and that the principal curvatures are given by

\[
 h_{uu}, \quad h_{vv}.
\]

4. Let \(\alpha (u) \) be a unit speed curve in the \(x, y \) plane \(\mathbb{R}^2 \). Show that

\[
 \sigma (u, v) = (\alpha (u), v).
\]

yields a parametrized surface. Compute its first and second fundamental forms and principal curvatures. Compute its Gauss curvature.

5. Consider a surface given by \(F(x, y) = C \), i.e., it is given by a function that doesn’t depend on the third coordinate \(z \). Compute the normal to this surface and show that its Gauss curvature vanishes.

6. For a regular curve \(\gamma (u) : I \to \mathbb{R}^3 - \{(0, 0, 0)\} \) show that \(f (u, v) = v\gamma (u) \) defines a surface for \(v > 0 \) provided \(\gamma \) and \(\dot{\gamma} \) are linearly independent (this a generalized cone.) Compute its first fundamental form. Show that it admits Cartesian coordinates by rewriting the surface as \(f (r, \theta) = r\delta (\theta) \) for a suitable unit speed curve \(\delta (\theta) \). Hint: \(\delta \) is the curve gotten by intersecting the generalized cone with the unit sphere.
7. Let f be a parametrization such that $g_{uu} = 1$ and $g_{uv} = 0$. Prove that the u curves are unit speed with acceleration that is perpendicular to the surface. The u curves are given by $\gamma(u) = f(u, v)$ where v is fixed.