A CHARACTER of a group G in a field \mathbb{K} is a group homomorphism $G \to \mathbb{K}^*$. If χ_1, \ldots, χ_m are distinct characters of G in \mathbb{K}, prove they are linearly independent (as functions) over \mathbb{K}, i.e., there is no non-trivial relation $\sum_{i=1}^{m} \alpha_i \chi_i = 0$, $\alpha_i \in \mathbb{K}$.

Hint: This is related to one of the arguments used in Reed FTGT.