Abstract. We review and slightly generalize some definitions and results on the essential dimension.

The notion of essential dimension of an algebraic group was introduced by Buhler and Reichstein in [1] and [21]. Informally speaking, essential dimension ed(G) of an algebraic group G over a field F is the smallest number of algebraically independent parameters required to define a G-torsor over a field extension of F. Thus, the essential dimension of G measures complexity of the category of G-torsors.

More generally, the essential dimension of a functor from the category \(\text{Fields} / F \) of field extensions of \(F \) to the category \(\text{Sets} \) of sets was discussed in [2].

Let \(p \) be a prime integer. Essential \(p \)-dimension \(\text{ed}_p(G) \) of an algebraic group was introduced in [22]. The integer \(\text{ed}_p(G) \) is usually easier to calculate than \(\text{ed}(G) \), and it measures the complexity of the category of G-torsors modulo “effects of degree prime to \(p \)”.

In the present paper we study essential dimension and \(p \)-dimension of a functor \(\text{Fields} / F \to \text{Sets} \) in a uniform way (Section 1). We also introduce essential \(p \)-dimension of a class of field extensions of \(F \), or equivalently, of a detection functor \(T : \text{Fields} / F \to \text{Sets} \), i.e., a functor \(T \) with \(T(L) \) consisting of at most one element for every \(L \).

For every functor \(T : \text{Fields} / F \to \text{Sets} \), we associate the class of field extensions \(L/F \) such that \(T(L) \neq \emptyset \). The essential \(p \)-dimension of this class is called canonical \(p \)-dimension of \(T \). Note that canonical \(p \)-dimension of a detection functor was introduced in [16] with the help of so-called generic fields that are defined in terms of places of fields. We show that this notion of the canonical \(p \)-dimension coincides with ours under a mild assumption (Theorem 1.16).

In Section 2, we introduce essential \(p \)-dimension of a presheaf of sets \(S \) on the category \(\text{Var}/F \) of algebraic varieties over \(F \). We associate a functor \(\tilde{S} : \text{Fields} / F \to \text{Sets} \) to every such an \(S \), and show that \(\text{ed}_p(S) = \text{ed}_p(\tilde{S}) \) (Proposition 2.6). In practice, many functors \(\text{Fields} / F \to \text{Sets} \) are of the form \(\tilde{S} \) for some presheaf of sets \(S \). This setting allows us to define \(p \)-generic elements \(a \in S(X) \) for \(S \) and show that \(\text{ed}_p(S) = \text{ed}_p(a) \) (Theorem 2.9). Thus, to determine \(\text{ed}_p(S) \) or \(\text{ed}_p(\tilde{S}) \) it is sufficient to compute the essential \(p \)-dimension of a single generic element.

1991 Mathematics Subject Classification. Primary 14E05, 14L30; Secondary 19E08, 13A18.

The author was supported in part by NSF Grant #0652316.
Following the approach developed by Brosnan, Reichstein and Vistoli in [3], in Section 3 we define essential p-dimension of a fibered category over Var/F. In Section 4, we consider essential dimension of an algebraic group scheme and in Section 5 the essential p-dimension of finite groups. Technical results used in the paper are summarized in the Appendix.

We use the following notation:

We write Fields/F for the category of finitely generated field extensions over F and field homomorphisms over F. For any $L \in \text{Fields}/F$, we have $\text{tr. deg}_F(L) < \infty$.

In the present paper, the word “scheme” over a field F means a separated scheme of finite type over F and a “variety” over F is an integral scheme over F.

Note that by definition, every variety is nonempty.

The category of algebraic varieties over F is denoted by Var/F. For any $X \in \text{Var}/F$, the function field $F(X)$ is an object of Fields/F and $\text{tr. deg} F(X) = \dim(X)$.

Let $f : X \to Y$ be a rational morphism of varieties over F of the same dimension. The degree $\deg(f)$ of f is zero if f is not dominant and is equal to the degree of the field extension $F(X)/F(Y)$ otherwise.

An algebraic group scheme over F in the paper is a group scheme of finite type over F.

If R is a ring, we write $M(R)$ for the category of finitely generated right R-modules.

Acknowledgment: I am grateful to Zinovy Reichstein for useful conversations and comments.

1. Definition of the essential p-dimension

The letter p in the paper denotes either a prime integer or 0. An integer k is said to be prime to p when k is prime to p if $p > 0$ and $k = 1$ if $p = 0$.

1.1. Essential p-dimension of a functor. Let $T : \text{Fields}/F \to \text{Sets}$ be a functor. Let $\alpha \in T(L)$ and $f : L \to L'$ a field homomorphism over F. The field L' can be viewed as an extension of L via f. Abusing notation we shall write $\alpha_{L'}$ for the image of α under the map $T(f) : T(L) \to T(L')$.

Let $K, L \in \text{Fields}/F$, $\beta \in T(K)$ and $\alpha \in T(L)$. We write $\alpha \succ_p \beta$ if there exist a finite field extension L' of L of degree prime to p and a field homomorphism $K \to L'$ over F such that $\alpha_{L'} = \beta_{L'}$. In the case $p = 0$, the relation $\alpha \succ_p \beta$ will be written as $\alpha \succ \beta$ and simply means that L is an extension of K with $\alpha = \beta_{L'}$.

Lemma 1.1. The relation \succ_p is transitive.

Proof. Let $\alpha \in T(L)$, $\beta \in T(K)$ and $\gamma \in T(J)$. Suppose $\alpha \succ_p \beta$ and $\beta \succ_p \gamma$, i.e., there exist finite extensions K' of K and L' of L, both of degree prime to p and F-homomorphisms $J \to K'$ and $K \to L'$ such that $\alpha_{L'} = \beta_{L'}$ and $\beta_{K'} = \gamma_{K'}$. By Lemma 1.1, there is a field extension L''/L' of degree prime to p and a field homomorphism $K' \to L''$ extending $K \to L'$. We have $\alpha_{L''} = \beta_{L''} = \gamma_{L''}$ and $[L'' : L]$ is prime to p, hence $\alpha \succ_p \gamma$. \hfill \square

Let $K, L \in \text{Fields}/F$. An element $\alpha \in T(L)$ is said to be p-defined over K and K is a field of p-definition of α if $\alpha \succ_p \beta$ for some $\beta \in T(K)$. In the case $p = 0$, we say that α is defined over K and K is a field of definition of α. The latter means that L is an extension of K and $\alpha = \beta_{L'}$ for some $\beta \in T(K)$.

The essential p-dimension of α, denoted $\text{ed}_p(\alpha)$, is the least integer $\text{tr} \cdot \deg_F(K)$ over all fields of p-definition K of α. In other words,
\[\text{ed}_p(\alpha) = \min\{\text{tr} \cdot \deg_F(K)\} \]
where the minimum is taken over all fields K/F such that there exists an element $\beta \in T(K)$ with $\alpha \succ_p \beta$.

The essential p-dimension of the functor T is the integer
\[\text{ed}_p(T) = \sup\{\text{ed}_p(\alpha)\} \]
where the supremum is taken over all $\alpha \in T(L)$ and fields $L \in \text{Fields}/F$.

We write $\text{ed}(T)$ for $\text{ed}_0(T)$ and simply call $\text{ed}(T)$ the essential dimension of T. Clearly, $\text{ed}(T) \geq \text{ed}_p(T)$ for all p.

Informally speaking, the essential dimension of T is the smallest number of algebraically independent parameters required to define T.

An element $\alpha \in T(L)$ is called p-minimal if $\text{ed}_p(\alpha) = \text{tr} \cdot \deg_F(L)$, i.e., whenever $\alpha \succ_p \beta$ for some $\beta \in T(K)$, we have $\text{tr} \cdot \deg_F(K) = \text{tr} \cdot \deg_F(L)$. By Lemma [L.], for every $\alpha \in T(L)$ there is a p-minimal element $\beta \in T(K)$ with $\alpha \succ_p \beta$. It follows that $\text{ed}_p(T)$ is the supremum of $\text{ed}_p(\alpha)$ over all p-minimal elements α.

1.2. Essential p-dimension of a scheme. Let X be a scheme over F. We can view X as a functor from Fields/F to Sets taking a field extension L/F to the set of L-points $X(L) := \text{Mor}_F(\text{Spec} L, X)$.

Proposition 1.2. For any scheme X over F, we have $\text{ed}_p(X) = \dim(X)$ for all p.

Proof. Let $\alpha : \text{Spec} L \rightarrow X$ be a point over a field $L \in \text{Fields}/F$ with image $\{x\}$. Every field of p-definition of α contains an image of the residue field $F(x)$. Moreover, α is p-defined over $F(x)$ hence $\text{ed}_p(\alpha) = \text{tr} \cdot \deg_F F(x) = \dim(x)$. It follows that $\text{ed}_p(X) = \dim(X)$. \(\square\)

1.3. Classifying variety of a functor. Let $f : S \rightarrow T$ be a morphism of functors from Fields/F to Sets. We say that f is p-surjective if for any field $L \in \text{Fields}/F$ and any $\alpha \in T(L)$, there is a finite field extension L'/L of degree prime to p such that $\alpha_{L'}$ belongs to the image of the map $S(L') \rightarrow T(L')$.

Proposition 1.3. Let $f : S \rightarrow T$ be a p-surjective morphism of functors from Fields/F to Sets. Then $\text{ed}_p(S) \geq \text{ed}_p(T)$.

Proof. Let $\alpha \in T(L)$ for a field $L \in \text{Fields}/F$. By assumption, there is a finite field extension L'/L of degree prime to p and an element $\beta \in S(L')$ such that $f(\beta) = \alpha_{L'}$ in $T(L')$. Let K be a field of p-definition of β, i.e., there is a field extension L''/L' of degree prime to p, an F-homomorphism $K \rightarrow L''$ and an element $\gamma \in S(K)$ such that $\beta_{L''} = \gamma_{L''}$. It follows from the equality
\[f(\gamma)_{L''} = f(\gamma_{L''}) = f(\beta_{L''}) = f(\beta)_{L''} = \alpha_{L''} \]
that α is p-defined over K, hence $\text{ed}_p(\beta) \geq \text{ed}_p(\alpha)$. The result follows. \(\square\)

Let $T : \text{Fields}/F \rightarrow \text{Sets}$ be a functor. A scheme X over F is called p-classifying for T if there is a p-surjective morphism of functors $X \rightarrow T$.

Propositions [L.1] and [L.2] yield:

Corollary 1.4. Let $T : \text{Fields}/F \rightarrow \text{Sets}$ be a functor and let X be a p-classifying scheme for T. Then $\dim(X) \geq \text{ed}_p(T)$.
1.4. Restriction. Let \(K \in \text{Fields}/F \) and \(T : \text{Fields}/F \to \text{Sets} \) a functor. The restriction \(T_K \) of the functor \(T \) is the composition of \(T \) with the natural functor \(\text{Fields}/K \to \text{Fields}/F \) that is the identity on objects.

Proposition 1.5. Let \(K \in \text{Fields}/F \) and let \(T : \text{Fields}/F \to \text{Sets} \) be a functor. Then for every \(p \), we have:

1. \(\text{ed}_p(T_K) \leq \text{ed}_p(T) \).
2. If \([K : F]\) is finite and relatively prime to \(p \), then \(\text{ed}_p(T_K) = \text{ed}_p(T) \).

Proof. (1): Let \(\alpha \in T_K(L) \) for a field \(L \in \text{Fields}/K \). We write \(\alpha' \) for the element \(\alpha \) considered in the set \(T(L) \). Every field of \(p \)-definition of \(\alpha \) is also a field of \(p \)-definition of \(\alpha' \), hence \(\text{ed}_p(\alpha) \leq \text{ed}_p(\alpha') \) and \(\text{ed}_p(T_K) \leq \text{ed}_p(T) \).

(2): Let \(\alpha \in T(L) \) for some \(L \in \text{Fields}/F \). By Lemma 1.4, there is a field extension \(L' / L \) of degree prime to \(p \) and an \(F \)-homomorphism \(K \to L' \). As \(L' \in \text{Fields}/K \), there is a field extension \(L'' / L' \) of degree prime to \(p \), a subfield \(K' \subseteq L'' \) in \(\text{Fields}/K \) and an element \(\beta \in T(K') \) with \(\beta_{L''} = \alpha_{L''} \) and \(\text{tr}. \deg_F(K') = \text{tr}. \deg_K(K') \leq \text{ed}_p(T_K) \). Hence \(\alpha \) is \(p \)-defined over \(K' \). It follows that \(\text{ed}_p(\alpha) \leq \text{ed}_p(T_K) \) and \(\text{ed}_p(T) \leq \text{ed}_p(T_K) \).

1.5. Essential \(p \)-dimension of a class of field extensions. In this section we introduce essential \(p \)-dimension of a class of fields and relate it to the essential \(p \)-dimension of certain functors.

Let \(L \) and \(K' \) be in \(\text{Fields}/F \). We write \(L \triangleright_p K \) if there is a finite field extension \(L' / L \) of degree prime to \(p \) and a field homomorphism \(K \to L' \) over \(F \). In particular, \(L \triangleright_p K \) if \(K \subseteq L \). The relation \(\triangleright_p \) coincides with the relation introduced in Section 1.1 for the functor \(T : \text{Fields}/F \to \text{Sets} \) defined by \(T(L) = \{ L \} \) (one-element set). It follows from Lemma 1.4 that this relation is transitive.

Let \(\mathcal{C} \) be a class of fields in \(\text{Fields}/F \) closed under extensions, i.e., if \(K \in \mathcal{C} \) and \(L \in \text{Fields}/K \), then \(L \in \mathcal{C} \). For any \(L \in \mathcal{C} \), let \(\text{ed}_p^\mathcal{C}(L) \) be the least integer \(\text{tr}. \deg_F(K) \) over all fields \(K \in \mathcal{C} \) with \(L \triangleright_p K \). The **essential \(p \)-dimension of the class \(\mathcal{C} \)** is the integer

\[
\text{ed}_p(\mathcal{C}) := \sup \{ \text{ed}_p^\mathcal{C}(L) \}
\]

over all fields \(L \in \mathcal{C} \). We simply write \(\text{ed}(\mathcal{C}) \) for \(\text{ed}_p(\mathcal{C}) \) with \(p = 0 \).

Essential \(p \)-dimensions of classes of fields and functors are related as follows. Let \(\mathcal{C} \) be a class of fields in \(\text{Fields}/F \) closed under extensions. Consider the functor \(T_\mathcal{C} : \text{Fields}/F \to \text{Sets} \) defined by

\[
T_\mathcal{C}(L) = \begin{cases}
\{ L \}, & \text{if } L \in \mathcal{C}; \\
\emptyset, & \text{otherwise.}
\end{cases}
\]

By the definition of the essential \(p \)-dimension, we have

\[
\text{ed}_p(\mathcal{C}) = \text{ed}_p(T_\mathcal{C}).
\]

Recall that a field \(L \in \mathcal{C} \), considered as an elements of \(T_\mathcal{C}(L) \), is called \(p \)-**minimal** if \(\text{ed}_p^\mathcal{C}(L) = \text{tr}. \deg_F(L) \). In other words, \(L \) is \(p \)-minimal if for any \(K \in \mathcal{C} \) with \(L \triangleright_p K \) we have \(\text{tr}. \deg_F(L) = \text{tr}. \deg_F(K) \). It follows from the definition that

\[
\text{ed}_p(\mathcal{C}) = \sup \{ \text{tr}. \deg_F(L) \}
\]

over all \(p \)-minimal fields in \(\mathcal{C} \).
The functor T_C is a detection functor, i.e., a functor T such that the set $T(L)$ has at most one element for every L. The correspondence $C \mapsto T_C$ is a bijection between classes of field extensions closed under extensions and detection functors.

1.6. Canonical p-dimension of a functor. Let $T : \text{Fields}/F \to \text{Sets}$ be a functor. Write C_T for the class of all fields $L \in \text{Fields}/F$ such that $T(L) \neq \emptyset$. The canonical p-dimension $\text{cdim}_p(T)$ of the functor T is the integer $\text{ed}_p(C_T)$. Equivalently, $\text{cdim}_p(T) = \text{ed}_p(T_C)$ for the detection functor T_C with $C = C_T$.

In more details, for a field $L \in \text{Fields}/F$ satisfying $T(L) \neq \emptyset$ we have $\text{ed}_p^L(L)$ is the least integer $\text{tr.deg}_p K$ over all fields K with $L \supseteq K$ and $T(K) \neq \emptyset$. Then

$$\text{cdim}_p(T) = \sup \{ \text{ed}_p^L(L) \}$$

over all fields $L \in \text{Fields}/F$ satisfying $T(L) \neq \emptyset$.

Note that the canonical dimension (respectively, canonical p-dimension) of a functor to the category of pointed sets was defined in [1] (respectively, [16]) by means of generic splitting fields. We consider a relation to generic fields in Section 1.4.

Proposition 1.6. For a functor $T : \text{Fields}/F \to \text{Sets}$, we have $\text{cdim}_p(T) \leq \text{ed}_p(T)$. If T is a detection functor, then $\text{cdim}_p(T) = \text{ed}_p(T)$.

Proof. There is a (unique) natural surjective morphism $T \to T_C$ with $C = C_T$. It follows from Proposition 1.6 that $\text{cdim}_p(T) = \text{ed}_p(T_C) \leq \text{ed}_p(T)$.

Let X be a scheme over F. Viewing X as a functor from Fields/F to Sets, we have the canonical p-dimension $\text{cdim}_p(X)$ of X defined. In other words, $\text{cdim}_p(X)$ is the essential p-dimension of the class

$$C_X := \{ L \in \text{Fields}/F \text{ such that } X(L) \neq \emptyset \}.$$

By Propositions 1.6 and 1.7, $\text{cdim}_p(X) \leq \text{ed}_p(X) = \dim(X)$.

Proposition 1.7. Let X be a smooth complete variety over F. Then $\text{cdim}_p(X)$ is the least dimension of the image of a morphism $X' \to X$, where X' is a variety over F admitting a dominant morphism $X' \to X$ of degree prime to p. In particular, $\text{cdim}(X)$ is the least dimension of the image of a rational morphism $X \dashrightarrow X$.

Proof. Let $Z \subset X$ be a closed subvariety and let $X' \to X$ and $X' \to Z$ be dominant morphisms with the first one of degree prime to p. Replacing X' by the closure of the graph of the diagonal morphism $X' \to X \times Z$ we may assume that X' is complete.

Let L be in Fields/F with $X(L) \neq \emptyset$ and $f : \text{Spec} L \to X$ a morphism over F. Let $\{x\}$ be the image of f. As x is non-singular, there is a geometric valuation v of $F(X)$ over F with center x and $F(v) = F(x) \subset L$ (cf. Lemma 1.4). We view $F(X)$ as a subfield of $F(X')$. As $F(X')/F(X)$ is a finite extension of degree prime to p, by Lemma 1.6 there is an extension v' of v on $F(X')$ such that $F(v')/F(v)$ is a finite extension of degree prime to p. Let x' be the center of v' on X' and z the image of x' in Z. As $F(x') \subset F(v')$, the extension $F(x')/F(x)$ is finite of degree prime to p. Since $L \supseteq_p F(x) \supseteq_p F(z)$, we have $L \supseteq_p F(z)$ by Lemma 1.7. Therefore,

$$\text{ed}_p^L(L) \leq \text{tr.deg}_F F(z) \leq \dim(Z),$$

where $C = C_X$ and hence $\text{cdim}_p(X) \leq \dim(Z)$.

ESSENTIAL DIMENSION 5
Conversely, note that X has a point over the field $F(X)$. Choose a finite extension $L'/F(X)$ of degree prime to p and a subfield $K \subset L'$ such that $X(K) \neq \emptyset$ and $\text{tr. deg}_F(K) = \text{ed}_F^p(F(X))$. Let Z be the closure of the image of a point $\text{Spec } K \to X$. We have $\dim(Z) \leq \text{tr. deg}_F(K)$. The compositions $\text{Spec } L' \to \text{Spec } F(X) \to X$ and $\text{Spec } L' \to \text{Spec } K \to Z$ yield a model X' of L' and two dominant morphisms $X' \to X$ of degree prime to p and $X' \to Z$ (cf. Appendix 6.3). We have

$$\text{cdim}_p(X) \geq \text{ed}_F^p(F(X)) = \text{tr. deg}_F(K) \geq \dim(Z).$$

As we noticed above, one has $\text{cdim}_p(X) \leq \dim(X)$ for every scheme X. We say that a scheme X over F is p-minimal if $\text{cdim}_p(X) = \dim(X)$. A scheme X is minimal if it is p-minimal with $p = 0$. Every p-minimal scheme is minimal.

Proposition 1.1 then yields:

Corollary 1.8. Let X be a smooth complete variety over F. Then

1. X is p-minimal if and only if for any variety X' over F admitting a surjective morphism $X' \to X$ of degree prime to p, every morphism $X' \to X$ is dominant.

2. X is minimal if and only if every rational morphism $X \dasharrow X$ is dominant.

Let X and Y be varieties over F and $d = \dim(X)$. A correspondence from X to Y, denoted $\alpha: X \twoheadrightarrow Y$, is an element $\alpha \in \text{CH}_d(X \times Y)$. If $\dim(Y) = d$, we write $\alpha^*: Y \to X$ for the image of α under the exchange isomorphism $\text{CH}_d(X \times Y) \simeq \text{CH}_d(Y \times X)$.

Let $\alpha: X \twoheadrightarrow Y$ be a correspondence. Assume that Y is complete. The projection morphism $p: X \times Y \to X$ is proper and hence the push-forward homomorphism

$$p_*: \text{CH}_d(X \times Y) \to \text{CH}_d(X) = Z \cdot [X]$$

is defined [14, § 1.4]. The integer $\text{mult}(\alpha) \in \mathbb{Z}$ such that $p_*(\alpha) = \text{mult}(\alpha) \cdot [X]$ is called the multiplicity of α. For example, if α is the class of the closure of the graph of a rational morphism $X \dasharrow Y$ of varieties of the same dimension, then $\text{mult}(\alpha) = 1$ and $\text{mult}(\alpha^i) = \text{deg}(f)$.

Proposition 1.9. Let X be a complete variety of dimension d over F. Suppose that for a prime integer p and every correspondence $\alpha \in \text{CH}_d(X \times X)$ one has $\text{mult}(\alpha) \equiv \text{mult}(\alpha^i) \pmod{p}$. Then X is p-minimal.

Proof. Let f and $g : X' \to X$ be morphisms from a complete variety X' of dimension d and let $\alpha \in \text{CH}_d(X \times X)$ be the class of the closure of the image of $(f, g) : X' \to X \times X$. Then $\text{mult}(\alpha) = \text{deg}(f)$ and $\text{mult}(\alpha^i) = \text{deg}(g)$. Hence by assumption, $\text{deg}(f) \equiv \text{deg}(g) \pmod{p}$. If $\text{deg}(f)$ is relatively prime to p, then so is $\text{deg}(g)$. In particular, g is dominant. By Corollary 1.1, X is p-minimal.

Example 1.10. Let q be a non-degenerate anisotropic quadratic form on a vector space V over F of dimension at least 2 and let X be the associated quadratic hypersurface in $P(V)$ (cf. [13, §22]). The first Witt index $i_1(q)$ of q is the Witt index of q over the function field $F(X)$. It is proved in [13, Prop. 7.1] that the condition of Proposition 1.1 holds for X and $p = 2$ if and only if $i_1(q) = 1$. In this case X is 2-minimal. It follows that $\text{cdim}_2(X) = \text{cdim}(X) = \dim(X)$ if $i_1(q) = 1$. In general, $\text{cdim}_2(X) = \text{cdim}(X) = \dim(X) - i_1(q) + 1$ (cf. 13, Th. 7.6)).
Example 1.11. Let A be a central simple algebra over F of dimension n^2 and $X = SB(A)$ the Severi-Brauer variety of right ideals in A of dimension n. In is shown in [14, Th. 2.1] that if A is a division algebra of dimension a power of a prime integer p, then the condition of Proposition 1.10 holds for X and p. In particular, X is p-minimal. It follows that for any central simple algebra A of p-primary index, we have $\text{cdim}_p(X) = \dim(X) = \text{ind}(A) - 1$. Moreover, the equality $\text{cdim}_p(X) = \text{ind}_p(A) - 1$, where $\text{ind}_p(A)$ is the largest power of p dividing $\text{ind}_p(A)$, holds for every central simple algebra A.

This example can be generalized as follows.

Example 1.12. Let p be a prime integer and D a (finite) p-subgroup of the Brauer group $\text{Br}(F)$ of a field F. Let A_1, A_2, \ldots, A_s be central simple F-algebras whose classes in $\text{Br}(F)$ generate D. Let $X = X_1 \times \cdots \times X_s$, where $X_i = SB(A_i)$ for every $i = 1, \ldots, s$. Suppose that $\dim(X)$ is the smallest possible (over all choices of the generators). Then the condition of Proposition 1.10 holds for X and p (cf. [14, Cor. 2.6, Rem. 2.9]) and hence X is p-minimal.

Let A be a central simple F-algebra of degree n. Consider the class C_A of all splitting fields of A in Fields/F. Let $X = SB(A)$, so $\dim(X) = n - 1$. We write $\text{cdim}_p(A)$ for $\text{cdim}_p(X)$ and $\dim(A)$ for $\text{cdim}(X)$. Since A is split over a field extension E/F if and only if $X(E) \neq \emptyset$, we have

$$\text{cdim}_p(A) = \dim_p(C_A) = \text{cdim}_p(X)$$

for every $p \geq 0$. Write $n = q_1q_2\cdots q_r$ where the q_i are powers of distinct primes. Then A is a tensor product $A_1 \otimes A_2 \otimes \cdots \otimes A_r$, where A_i is a central division F-algebra of degree q_i. A field extension E/F splits A if and only if E splits A_i for all i. In other words, X has an E-point if and only if the variety $Y = SB(A_1) \times SB(A_2) \times \cdots \times SB(A_r)$ has an E-point. Hence

$$(1) \quad \text{cdim}(A) = \text{cdim}(X) = \text{cdim}(Y) \leq \dim(Y) = \sum_{i=1}^r (q_i - 1).$$

It was conjectured in [3] that the inequality in (1) is actually an equality. This is proved in [13, Th. 2.1] (see also [14, Th. 11.4]) in the case when $r = 1$, i.e., when $\deg(A)$ is power of a prime integer. The case $n = 6$ was settled in [3].

1.7. **Canonical dimension and generic fields.** Let F be a field and let \mathcal{C} be a class of fields in Fields/F. A field $L \in \mathcal{C}$ is called p-generic in \mathcal{C} if for any field $K \in \mathcal{C}$ there is a geometric F-place $L \to K'$, where K' is a finite extension of K of degree prime to p (cf. Appendix 1.5). In the case $p = 0$ we simply say that L is generic in \mathcal{C}. Clearly, if L is generic, then it is p-generic for all p.

Example 1.13. If X is a smooth variety, then by Lemma 1.13, the function field $F(X)$ is generic.

Lemma 1.14. If L is a p-generic field in \mathcal{C} and $L \to_p M$ with $M \in \mathcal{C}$, then M is p-generic.

Proof. Take any $K \in \mathcal{C}$. There are field extensions K'/K and L'/L of degree prime to p, a geometric F-place $L \to K'$ and an F-homomorphism $M \to L'$. By Lemma 1.3, there is a field extension K''/K' of degree prime to p and a geometric
A. MERKURJEV

Let \(C \) be a variety extending the place \(L \rightarrow K' \). The composition \(M \rightarrow L' \rightarrow K'' \) is a geometric place and \(K''/K \) is an extension of degree prime to \(p \). Hence \(M \) is \(p \)-generic.

We say that a class \(C \) is closed under specializations, if for any \(F \)-place \(L \rightarrow K \) with \(L \in C \) we have \(K \in C \). Clearly if \(C \) is closed under specializations, then \(C \) is closed under extensions.

Example 1.15. If a variety \(X \) is complete, then the class \(C_X \) is closed under specializations. Indeed, let \(L \rightarrow K \) be an \(F \)-place with \(X(L) \neq \emptyset \). If \(R \subset L \) is the valuation ring of the place, then \(X(R) \neq \emptyset \) as \(X \) is complete. It follows that \(X(K) \neq \emptyset \) since there is an \(F \)-homomorphism \(R \rightarrow K \).

Theorem 1.16. Let \(C \) be a class of fields in \(\text{Fields}/F \) and \(p \geq 0 \) satisfying:

1. \(C \) has a \(p \)-generic field.
2. \(C \) is closed under specializations.

Then \(ed_p(C) \) is the least \(\text{tr.deg}_F(L) \) over all \(p \)-generic fields \(L \in C \).

Proof. Let \(L \in C \) be a \(p \)-generic field with the least \(\text{tr.deg}_F(L) \). By Lemma 1.14, any field \(M \in C \) with \(L \succ_p M \) is also \(p \)-generic. Hence \(L \) is \(p \)-minimal. It follows that \(\text{tr.deg}_F(L) \leq ed_p(C) \).

Let \(L \in C \) be a \(p \)-generic field and \(K \in C \) an arbitrary \(p \)-minimal field. There is a place \(L \rightarrow K' \) over \(F \), where \(K' \) is an extension of \(K \) of degree prime to \(p \). Let \(K'' \subset K' \) be the image of the place. As \(C \) is closed under specializations, we have \(K'' \in C \). Since \(K \succ_p K'' \) and \(K \) is \(p \)-minimal, we have \(\text{tr.deg}_F(K'') = \text{tr.deg}_F(K) \). Hence

\[
\text{tr.deg}_F(L) \geq \text{tr.deg}_F(K'') = \text{tr.deg}_F(K).
\]

Therefore, \(\text{tr.deg}_F(L) \geq ed_p(C) \).

Remark 1.17. By Examples 1.14 and 1.15, for a smooth complete variety \(X \) over \(F \), the class \(C_X \) satisfies the conditions of the theorem. In particular, for such an \(X \), the integer \(cdim_p(X) \) coincides with the canonical \(p \)-dimension introduced in 1.16.

Example 1.18. Let \(G \) be either a (finite) étale or a split (connected) reductive group over \(F \). Let \(B \) be a Borel subgroup in \(G \) and \(E \) a \(G \)-torsor over a field extension \(L \) of \(F \). Then \(E \) has an \(L \)-point if and only if \(E/B \) has an \(L \)-point. As \(E/B \) is a smooth complete variety, the class the class \(C_E \) satisfies the conditions of Theorem 1.16, hence \(cdim_p(E) \) can be computed using \(p \)-generic splitting fields in 1.16.

2. Essential \(p \)-dimension of a presheaf of sets

By a presheaf of sets on \(\text{Var}/F \) we mean a functor \(S : (\text{Var}/F)^{op} \rightarrow \text{Sets} \). If \(f : X' \rightarrow X \) is a morphism in \(\text{Var}/F \) and \(a \in S(X) \), then we often write \(a_{X'} \) for the image of \(a \) under the map \(S(f) : S(X) \rightarrow S(X') \).

Definition 2.1. Let \(S \) be a presheaf of sets on \(\text{Var}/F \). Let \(X, Y \in \text{Var}/F \) and \(a \in S(X), b \in S(Y) \). We write \(a \succ_p b \) if there is a variety \(X' \in \text{Var}/F \), a morphism \(g : X' \rightarrow Y \) and a dominant morphism \(f : X' \rightarrow X \) of degree prime to \(p \) such that \(a_{X'} = b_{X'} \) in \(S(X') \).
Let S be a presheaf of sets on Var/F and $a \in S(X)$ for some $X \in \text{Var}/F$. The essential dimension of a, denoted $\text{ed}_p(a)$, is the least $\dim(Y)$ over all elements $b \in S(Y)$ for a variety Y with $a \succ_p b$. As $a \succ_p a$, we have $\text{ed}_p(a) \leq \dim(X)$.

The essential p-dimension of the functor S is the integer

$$\text{ed}_p(S) = \sup \{ \text{ed}_p(a) \}$$

over all $a \in S(X)$ and varieties $X \in \text{Var}/F$. We also write $\text{ed}(S)$ for $\text{ed}_p(S)$ if $p = 0$.

The relation \succ_p is not transitive in general. We refine this relation as follows. We write $a \triangleright_p b$ if $a \succ_p b$ and in addition, in Definition 2.1, the morphism g is dominant. We also write $a \blacktriangleleft_p b$ if $a \succ_p b$ and in addition, in Definition 2.1, the morphism f satisfies the following condition: for every point $x \in X$, there is a point $x' \in X'$ with $f(x') = x$ and $[F(x') : F(x)]$ prime to p.

Lemma 2.2. Let S be a presheaf of sets on Var/F, $a \in S(X)$, $b \in S(Y)$ and $c \in S(Z)$.

1. If $a \succ_p b$ and $b \blacktriangleleft_p c$, then $a \succ_p c$.
2. If $a \triangleright_p b$ and $b \succ_p c$, then $a \succ_p c$.

Proof. In the definition of $a \succ_p b$, let $f : X' \to X$ be a dominant morphism of degree prime to p and $g : X' \to Y$ a morphism. In the definition of $b \succ_p c$, let $h : Y' \to Y$ be a dominant morphism of degree prime to p and $k : Y' \to Z$ a morphism. Let $y \in Y$ be the image of the generic point of X' under g. In the case (1), there is an $y' \in Y'$ such that $f(y') = y$ and $[F(y') : F(y)]$ is prime to p. In the case (2), y is the generic point of Y. If y' is the generic point of Y', then $[F(y') : F(y)]$ is prime to p. Thus in any case, $[F(y') : F(y)]$ is prime to p. Hence by Lemma 2.1, there is a commutative square of morphisms of varieties

$$
\begin{array}{ccc}
X' & \to & X \\
\downarrow m & & \downarrow g \\
Y' & \to & Y
\end{array}
$$

with m dominant of degree prime to p. Then the compositions $f \circ m$ and $k \circ l$ yield $a \succ_p c$. \qed

Let $a \in S(X)$ and $V \subset X$ a subvariety. We write $a|_V$ for the restriction of a on V.

Lemma 2.3. Let S be a presheaf of sets on Var/F, $a \in S(X)$ and $b \in S(Y)$. Suppose that $a \succ_p b$. Then:

1. There is an open subvariety $U \subset X$ such that $(a|_U) \triangleright_p b$.
2. There is a closed subvariety $Z \subset Y$ such that $a \triangleright_p (b|_Z)$.

Proof. Choose a variety $X' \in \text{Var}/F$, a morphism $g : X' \to Y$ and a dominant morphism $f : X' \to X$ of degree prime to p such that $a_{X'} = b_{X'}$ in $S(X')$.

1. By Lemma 2.2, there exists a nonempty open subset $U \subset X$ such that for every $x \in U$ there is a point $x' \in X'$ with $f(x') = x$ and the degree $[F(x') : F(x)]$ prime to p. Then the restrictions $f^{-1}(U) \to U$ and $f^{-1}(U) \to Y$ yield $(a|_U) \triangleright_p b$.

2. Let Z be the closure of the image of g. We have $a \triangleright_p (b|_Z)$. \qed

Corollary 2.4. Let S be a presheaf of sets on Var/F and $a \in S(X)$. Then there is an element $b \in S(Y)$ such that $\text{ed}_p(a) = \dim(Y)$ and $a \triangleright_p b$. \qed
Proof. By the definition of the essential p-dimension, there is $b \in S(Y)$ such that $\text{ed}_p(a) = \dim(Y)$ and $a >_p b$. By Lemma 1, there is a closed subvariety $Z \subset Y$ such that $a \triangleright_p (b|_Z)$. In particular, $a >_p (b|_Z)$. As $\dim(Y)$ is the smallest integer with the property that $a >_p b$, we must have $\dim(Z) = \dim(Y)$, i.e., $Z = Y$. It follows that $a \triangleright_p b$. □

2.1. The associated functor \tilde{S}. Let S be a presheaf of sets on Var/F. We define a functor $\tilde{S} : \text{Fields}/F \to \text{Sets}$ as follows. Let $L \in \text{Fields}/F$. The sets $S(X)$ over all models X of L form a direct system with respect to morphisms of models (cf. Appendix). Set

$$\tilde{S}(L) = \text{colim} S(X).$$

In particular, for any $X \in \text{Var}/F$, we have a canonical map $S(X) \to \tilde{S}(L)$ with $L = F(X)$. We write \tilde{a} for an element $a \in S(X)$. For every $L \in \text{Fields}/F$, any element of $\tilde{S}(L)$ is of the form \tilde{a} for some $a \in S(X)$, where X is a model of L.

An F-homomorphism of fields $L \to L'$ yields a morphism $X' \to X$ of the corresponding models and hence the maps of sets $S(X) \to S(X')$ and $\tilde{S}(L) \to \tilde{S}(L')$ making \tilde{S} a functor.

Recall that we have the relations $>_p$ and \triangleright_p defined for the functors S and \tilde{S} respectively.

Lemma 2.5. Let S be a presheaf of sets on Var/F, $X \in \text{Var}/F$, $K \in \text{Fields}/F$ and $a \in S(X)$ and $\beta \in \tilde{S}(K)$. Then $\tilde{a} >_p \beta$ if and only if there is a model Y of K and an element $b \in S(Y)$ such that $\tilde{b} = \beta$ and $a \triangleright_p b$.

Proof. \Rightarrow: There is a finite field extension $L'/F(X)$ of degree prime to p and an F-homomorphism $K \to L'$ such that $\tilde{a}_{L'} = \beta_{L'}$. One can choose a model X' of L' and Y of K together with two dominant morphisms $X' \to X$ and $X' \to Y$, the first of degree prime to p, that induce field homomorphisms $F(X) \to L'$ and $K \to L'$ respectively. Replacing Y and X' by open subvarieties, we may assume that there is $b \in S(Y)$ with $\tilde{b} = \beta$. The elements $a_{X'}$ and $b_{X'}$ may not be equal in $S(X')$ but they coincide when restricted to an open subvariety $U \subset X'$. Replacing X' by U, the variety Y by an open subvariety W in the image of U and b by $b|_W$ we get the $a \triangleright_p b$.

\Leftarrow: Choose a variety $X' \in \text{Var}/F$, a dominant morphism $g : X' \to Y$ and a dominant morphism $f : X' \to X$ of degree prime to p such that $a_{X'} = b_{X'}$ in $S(X')$. Then $F(Y)$ and $F(X')$ are subfields of $F(X')$, the degree $[F(X') : F(X)]$ is prime to p and $\tilde{a}_{F(X')} = \tilde{b}_{F(X')} = \beta_{F(X')}$, hence $\tilde{a} >_p \beta$. □

Proposition 2.6. Let S be a presheaf of sets on Var/F, $X \in \text{Var}/F$ and $a \in S(X)$. Then $\text{ed}_p(a) = \text{ed}_p(\tilde{a})$ for all p. Moreover, $\text{ed}_p(S) = \text{ed}_p(\tilde{S})$.

Proof. By Corollary, there is $b \in S(Y)$ such that $\text{ed}_p(a) = \dim(Y)$ and $a \triangleright_p b$. It follows from Lemma that $\tilde{a} >_p \tilde{b}$. Hence

$$\text{ed}_p(\tilde{a}) \leq \text{tr. deg}_F F(Y) = \dim(Y) = \text{ed}_p(a).$$

Let $\beta \in \tilde{S}(L)$ be so that $\tilde{a} >_p \beta$ and $\text{ed}_p(\tilde{a}) = \text{tr. deg}_F(L)$. By Lemma we can choose a model Y of L and an element $b \in S(Y)$ so that $\tilde{b} = \beta$ and $a \triangleright_p b$. Hence

$$\text{ed}_p(a) \leq \dim(Y) = \text{tr. deg}_F(L) = \text{ed}_p(\tilde{a}).$$

□
2.2. Generic elements. Let S be a presheaf of sets on Var/F and $X \in \text{Var}/F$. An element $a \in S(X)$ is called p-generic for S if for any open subvariety $U \subset X$ and any $b \in S(Y)$ with the infinite field $F(Y)$ we have $b >_p (a|_U)$. Note that $F(Y)$ is infinite if either F is infinite or $\dim(Y) > 0$. We say that a is generic if a is p-generic for $p = 0$. If a is generic, then a is p-generic for all p.

Generic elements provide an upper bound for the essential dimension.

Proposition 2.7. Let S be a presheaf of sets on Var/F and $a \in S(X)$ a p-generic element for S. Then $\text{ed}_p(S) \leq \dim(X)$.

Proof. Let $b \in S(Y)$. If the field $F(Y)$ is finite, we have $\text{ed}_p(b) = 0$. If $F(Y)$ is infinite, $b >_p a$ since a is p-generic. By the definition of the essential p-dimension, in any case, $\text{ed}_p(b) \leq \dim(X)$, hence $\text{ed}_p(S) \leq \dim(X)$. \square

Clearly, if a is p-generic, then so is the restriction $a|_U \in S(U)$ for any open subvariety $U \subset X$. This can be generalized as follows.

Proposition 2.8. Let S be a presheaf of sets on Var/F, $X, Y \in \text{Var}/F$, $a \in S(X)$ and $b \in S(Y)$. Suppose that $a >_p b$ and a is p-generic. Then b is also p-generic for S.

Proof. Let $c \in S(Z)$ with the field $F(Z)$ infinite and $V \subset Y$ an open subvariety. Clearly, $a >_p (b|_V)$. By Lemma 2.9(1), we have $(a|_U) >_p (b|_V)$ for an open subvariety $U \subset X$. Since a is p-generic, we have $c >_p (a|_U)$. By Lemma 2.9(1), $c >_p (b|_V)$, hence b is p-generic. \square

Theorem 2.9. Let S be a presheaf of sets on Var/F. If $a \in S(X)$ is a p-generic element for S, then

$$\text{ed}_p(S) = \text{ed}_p(\tilde{S}) = \text{ed}_p(\tilde{a}) = \text{ed}_p(a).$$

Proof. In view of Proposition 2.6, it suffices to prove that $\text{ed}_p(S) \leq \text{ed}_p(a)$. Choose an element $c \in S(Z)$ such that $a >_p c$ and $\text{ed}_p(a) = \dim(Z)$. By Lemma 2.9(1), there is an open subvariety $U \subset X$ such that $(a|_U) >_p c$.

Let $Y \in \text{Var}/F$ and let $b \in S(Y)$ be any element. If the field $F(Y)$ is finite, we have $\text{ed}_p(b) = 0$. Otherwise, as a is p-generic, we have $b >_p (a|_U)$. It follows from Lemma 2.9(1) that $b >_p c$. Hence, in any case, $\text{ed}_p(b) \leq \dim(Z) = \text{ed}_p(a)$ and therefore, $\text{ed}_p(S) \leq \text{ed}_p(a)$. \square

Let S be a presheaf of sets on Var/F. An element $a \in \tilde{S}(L)$ is called p-generic for \tilde{S} is $a = \tilde{a}$ for a p-generic element a for S.

Example 2.10. One can view a scheme X over F as a presheaf of sets on Var/F by $X(Y) := \text{Mor}_F(Y, X)$ for every $Y \in \text{Var}/F$. Then the functor $\tilde{X} : \text{Fields}/F \to \text{Sets}$ coincides with the one in Proposition 2.6. It follows from Theorem 2.9 that $\text{ed}_p(X) = \dim(X)$ for all p.

By Proposition 2.6, for a p-generic element $a \in S(X)$, one has $\text{ed}_p(S) \leq \dim(X)$. The following proposition asserts that $\text{ed}_p(S)$ is equal to the dimension of a closed subvariety of X with a certain property.

Proposition 2.11. Let S be a presheaf of sets on Var/F and $a \in S(X)$ a p-generic element for S. Suppose that either F is infinite or $\text{ed}_p(S) > 0$. Then $\text{ed}_p(S) = \min \dim(Z)$ over all closed subvarieties $Z \subset X$ such that $a >_p (a|_Z)$.

For any closed subvariety $Z \subset X$ with $a >_p (a|Z)$ one has $ed_p(S) = ed_p(a) \leq \dim(Z)$. We shall show that the equality holds for some $Z \subset X$.

By Corollary 4.3, there is $b \in S(Y)$ with $\dim(Y) = ed_p(a) = ed_p(S)$ and $a >_p b$. By assumption, the field $F(Y)$ is infinite. As a is p-generic, we have $b >_p a$. By Lemma 4.7(2), there is a closed subvariety $Z \subset X$ such that $b >_p (a|Z)$. It follows that $\dim(Z) \leq \dim(Y) = ed_p(S)$. By Lemma 4.7(2), $a >_p (a|Z)$.

Remark 2.12. The assumption in the proposition can not be dropped (cf. Remark 4.7).

An element $a \in S(X)$ is called p-minimal if $ed_p(a) = \dim(X)$, i.e., whenever $\alpha >_p \beta$ for some $\beta \in S(Y)$, we have $\dim(X) \leq \dim(Y)$. By Lemma 4.7(2) and Corollary 4.3, for every $a \in S(X)$, there is a p-minimal $b \in S(Y)$ such that $ed_p(a) = \dim(Y)$ and $a >_p b$. It follows that $ed_p(S)$ is the maximum of $ed_p(a)$ over all p-minimal elements a.

A p-minimal element with $p = 0$ is called minimal.

If $a \in S(X)$ is p-generic p-minimal, then $ed_p(S) = \dim(X)$.

If $a \in S(X)$ is a p-generic element for S and $b \in S(Y)$ is a p-minimal element satisfying $a >_p b$, then by Proposition 4.8, b is also p-generic, and hence $ed_p(S) = \dim(Y)$.

The following statement gives a characterization of p-generic p-minimal elements.

Proposition 2.13. Let S be a presheaf of sets on Var/F and $a \in S(X)$ a p-generic element for S. Suppose that either F is infinite or $ed_p(S) > 0$. Then a is p-minimal if and only if for any two morphisms f and g from a variety X' to X such that $S(f)(a) = S(g)(a)$ with f dominant of degree prime to p, the morphism g is also dominant.

Proof. Suppose a is p-minimal and let f and g be morphisms in the statement of the proposition. Let Z be the closure of the image of g, so $a >_p (a|Z)$. By Proposition 4.11, $\dim(X) = ed_p(S) \leq \dim(Z)$, hence $Z = X$ and g is dominant.

Suppose a is not p-minimal. By Proposition 4.11, there is a proper closed subvariety $Z \subset X$ such that $a >_p (a|Z)$, i.e., there are morphisms $f : X' \to X$ and $g' : X' \to Z$ such that $S(f)(a) = S(g')(a|Z)$ and f is dominant of degree prime to p. If $g : X' \to X$ if the composition of g' with the embedding of Z into X, then $S(f)(a) = S(g)(a)$ and g is not dominant.

Specializing to the case $p = 0$ we have:

Corollary 2.14. In the conditions of the proposition, a is minimal if and only if for any two morphisms f and g from a variety X' to X such that $S(f)(a) = S(g)(a)$ with f a birational isomorphism, the morphism g is dominant.

3. Essential p-dimension of fibered categories

The notion of the essential p-dimension can be defined for fibered categories over Var/F or Fields/F as follows (cf. [3]).

Let \mathcal{A} be a category and $\varphi : \mathcal{A} \to \text{Var}/F$ a functor. For a variety $Y \in \text{Var}/F$, we write $\mathcal{A}(Y)$ for the fiber category of all objects ξ in \mathcal{A} with $\varphi(\xi) = Y$ and morphisms over the identity of Y. We assume that the category $\mathcal{A}(Y)$ is essentially small for all Y, i.e., the isomorphism classes of objects form a set.
Suppose that \mathcal{A} is a fibered category over Var/F (cf. [43]). In particular, for any morphism $f : Y \to Y'$ in Var/F, there is a pull-back functor $f^* : \mathcal{A}(Y') \to \mathcal{A}(Y)$ such that for any two morphisms $f : Y \to Y'$ and $g : Y' \to Y''$ in Var/F, the composition $f^* \circ g^*$ is isomorphic to $(g \circ f)^*$.

Let \mathcal{A} be a fibered category over Var/F. For any $Y \in \text{Var}/F$, we write $S_\mathcal{A}(Y)$ for the set of isomorphism classes of objects in the category $\mathcal{A}(Y)$. The functor f^* for a morphism $f : Y \to Y'$ in Var/F induces a map of sets $S_\mathcal{A}(Y') \to S_\mathcal{A}(Y)$ making $S_\mathcal{A}$ a presheaf of sets on Var/F. We call $S_\mathcal{A}$ the presheaf of sets associated with \mathcal{A}. The essential p-dimension $\text{ed}_p(\mathcal{A})$ of \mathcal{A} (respectively, the canonical p-dimension $\text{cdim}_p(\mathcal{A})$ of \mathcal{A}) is defined as $\text{ed}_p(S_\mathcal{A})$ (respectively, $\text{cdim}_p(S_\mathcal{A})$).

Remark 3.1. In a similar fashion, one can define the essential p-dimension for fibered categories over Fields/F. This notion agrees with the one given above in view of Theorem [43].

Example 3.2. Let X be a scheme over F. Consider the category Var/X of varieties over X, i.e., morphisms $Y \to X$ for a variety Y over F. Morphisms in Var/X are morphisms of varieties over X. The functor $\text{Var}/X \to \text{Var}/F$ taking $Y \to X$ to Y together with the obvious pull-back functors f^* make Var/X a fibered category. For any variety Y, the fiber category over Y is equal to the set $\text{Mor}_F(Y, X)$. Hence the associated presheaf of sets on Var/F coincides with X viewed as a presheaf as in Example [43]. It follows that $\text{ed}_p(\text{Var}/X) = \text{dim}(X)$ for all p.

Example 3.3. Let G be an algebraic group scheme over a field F. The classifying space BG of the group G is the category with objects (right) G-torsors $q : E \to Y$ with $Y \in \text{Var}/F$ and morphisms between G-torsors $q : E \to Y$ and $q' : E' \to Y'$ given by commutative diagrams

$$
\begin{array}{ccc}
E & \longrightarrow & E' \\
\downarrow & & \downarrow \\
Y & \longrightarrow & Y'
\end{array}
$$

with the top arrow a G-equivariant morphism. For every $Y \in \text{Var}/F$, the fiber category $BG(Y)$ is the category of G-torsors over Y. We write $\text{ed}_p(G)$ for $\text{ed}_p(BG)$ and call this integer the essential p-dimension of G. Equivalently, by Proposition [43], $\text{ed}_p(G)$ is the essential p-dimension of the functor $\text{Fields}/F \to \text{Sets}$ taking a field L to the set of isomorphism classes of G-torsors over L.

Example 3.4. We can generalize the previous example as follows. Let an algebraic group scheme G act on a scheme X over F. We define the fibered category X/G as follows. An object in X/G over a variety Y is a diagram

$$
\begin{array}{ccc}
E & \longrightarrow & X \\
\downarrow & & \downarrow \\
Y & \longrightarrow & Y
\end{array}
$$

where q is a G-torsor and f is a G-equivariant morphism. Morphisms of diagrams in X/G are defined in the obvious way. The functor $X/G \to \text{Var}/F$ takes the diagram to the scheme Y. The set $S_{X/G}(Y)$ consists of all isomorphism classes of
the diagrams above. For any field $L \in \text{Fields}/F$, an element of the set $\tilde{S}_{X/G}(L)$ is given by the diagram

$$
\begin{array}{c}
E' \\
\downarrow q' \\
\text{Spec } L
\end{array}
\xrightarrow{f'} X
$$

where q' is a G-torsor and f' is a G-equivariant morphism.

Note that if X is a G-torsor over a scheme Y, then $X/G \simeq Y$, and if $X = \text{Spec } F$, then $X/G = BG$.

3.1. Gerbes.

Let C be a commutative algebraic group scheme over F. There is the notion of a gerbe banded by C (cf. [19, p. 144], [13, IV.3.1.1], see also examples below). There exists a bijection between the first cohomology group $H^2(F; C) := H^2_{fppf}(\text{Spec } F; C)$ and the set of isomorphism classes of gerbes banded by C. The trivial element in $H^2(F; C)$ corresponds to the classifying space BC, so BC is a trivial (split) gerbe banded by C. In general, a gerbe banded by C can be viewed as a "twisted form" of BC.

Example 3.5. Let

$$1 \to C \to G \to H \to 1$$

be an exact sequence of algebraic group schemes with C a commutative group and $E \to \text{Spec } F$ an H-torsor. The group G acts on E via the map $G \to H$. The category E/G is a gerbe banded by C. The corresponding element in $H^2(F; C)$ is the image of the class of E under the connecting map

$$H^1(F, H) \to H^2(F, C).$$

Example 3.6. (Gerbes banded by μ_n) Let A be a central simple F-algebra and n an integer with $[A] \in \text{Br}_n(F) = H^2(F, \mu_n)$. Let X be the Severi-Brauer variety of A. Denote by X_A the gerbe banded by μ_n corresponding to $[A]$. It is shown in [3] that if n is a power of a prime integer p, then

$$\text{ed}_p(X_A) = \text{ed}(X_A) = \text{cdim}_p(X_A) + 1 = \text{cdim}(X_A) + 1 = \text{ind}(A).$$

Example 3.7. One can generalize the previous example as follows. Let p be a prime integer and C a diagonalizable algebraic group scheme of rank s and exponent p over F. In other words, C is isomorphic to the product of s copies of μ_p. An element $\theta \in H^2(F, C)$ determines a gerbe X banded by C. Consider the homomorphism $\beta : C^* \to \text{Br}(F)$ taking a character $\chi \in C^*$ to the image of θ under the map $H^2(F, C) \to H^2(F, G_m) = \text{Br}(F)$ induced by χ. It follows from [13, 3.1] that

$$\text{ed}_p(X) = \text{ed}(X) = \text{cdim}_p(X) + s = \text{cdim}(X) + s.$$

For a generating set $\chi_1, \chi_2, \ldots, \chi_s$ of C^*, let A_1, A_2, \ldots, A_s be central division F-algebras such that $[A_i] = \beta(\chi_i)$. Set $X_i = \text{SB}(A_i)$ and $X = X_1 \times \cdots \times X_s$. Clearly, the gerbe X is split over a field extension L of F if and only if all the algebras A_i are split over L if and only if X has a point over L. It follows that $\text{cdim}_p(X) = \text{cdim}_p(X)$.
By Example 5.4, any basis of $\text{Ker}(\beta)$ over $\mathbb{Z}/p\mathbb{Z}$ can be completed to a basis $\chi_1, \chi_2, \ldots, \chi_s$ of C^* such that X is p-minimal, i.e.,
\[\text{cdim}_p(X) = \dim(X) = \sum_{i=1}^s (\text{ind}(A_i) - 1) = \sum_{i=1}^s (\text{ind}(\chi_i) - 1). \]
It follows from (2) that
\[\text{ed}_p(X) = \sum_{i=1}^s \text{ind}(\chi_i). \]

4. Essential p-dimension of algebraic group schemes

Let G be an algebraic group scheme over a field F. A G-space is a finite dimensional vector space V with a (right) linear G-action. (Equivalently, the natural map $G \to \text{GL}(V)$ is a finite dimensional representation of G.) We say that G acts on V generically freely (or V is generically free) if there is a nonempty open G-invariant subset $V' \subset V$ and a G-torsor $V' \to X$ for some scheme X over F (cf. [1, Def. 4.8 and 4.10]).

One can construct G-spaces V with generically free action as follows. Embed G into $\text{GL}(W)$ as a subgroup for some vector space W of finite dimension and set $V = \text{End}(W)$. We view V as a G-space via right multiplications. Then $\text{GL}(W)$ is an open G-invariant subset in V and the natural morphism $\text{GL}(W) \to \text{GL}(W)/G$ is a G-torsor.

Theorem 4.1. (cf. [12, Lemma 6.6], [13, Example 5.4]) Let G be an algebraic group scheme over a field F and V a G-space. Suppose that G acts on V generically freely, i.e., there is a nonempty open subset $V' \subset V$ and a G-torsor $a : V' \to X$ for some scheme X. Then the torsor a is p-generic for all p.

Proof. Let $b : E \to Y$ be a G-torsor with the infinite field $F(Y)$. Let $U \subset X$ be an open subvariety. We need to show that $b >_p (a|_U)$. Replacing X by U and V' by $a^{-1}(U)$ we may assume that $U = X$. We shall show that $b >_p a$.

The morphism $a \times b : V' \times E \to X \times Y$ is a $(G \times G)$-torsor. Considering G as a diagonal subgroup of $G \times G$ we have a G-torsor $c : V' \times E \to Z$ and a commutative diagram
\[
\begin{array}{ccc}
V' & \longrightarrow & V' \times E \\
\downarrow a & & \downarrow b \\
X & \longleftarrow & Z \longrightarrow Y
\end{array}
\]
with the projections in the top row. The scheme $V' \times E$ is an open subset of the (trivial) vector bundle $V \times E$ over E. By descent, Z is an open subset of a vector bundle over Y. Therefore, the generic fiber of f is an open set of a vector space over the infinite field $F(Y)$ and hence it has a point over $F(Y)$, i.e., the generic fiber of f has a splitting. It follows that there is an open subvariety $W \subset Y$ such that f has a splitting $h : W \to Z$ over W.

Set $E' := W \times_Z (V' \times E)$. In the commutative diagram with fiber product squares
\[
\begin{array}{ccc}
E' & \longrightarrow & V' \times E \\
\downarrow & & \downarrow \\
W & \longrightarrow & Z \longrightarrow Y
\end{array}
\]
the composition in the bottom row is the inclusion morphism. Hence $E' = E|_W$ and the left vertical arrow coincides with $b|_W$. The commutative diagram

$$
\begin{array}{ccc}
E & \longrightarrow & E|_W \\
b \downarrow & & \downarrow b|_W \\
Y & \longleftarrow & W \overset{gh}{\longrightarrow} X
\end{array}
$$

then yields $b >_p a$ for all p.

\[\square \]

Corollary 4.2. (cf. [24 Prop. 4.11]) Let G be an algebraic group scheme over a field F. Then $e_d_p(G) \leq \dim(V) - \dim(G)$ for every generically free G-space V.

Corollary 4.3. Let G be an algebraic group scheme over a field F and H a subgroup of G. Then $e_d_p(G) + \dim(G) \geq e_d_p(H) + \dim(H)$.

Proof. Let $a : V' \rightarrow X$ be the p-generic G-torsor as in Theorem 4.3. Since H acts on V generically freely, there is a p-generic H-torsor $b : V' \rightarrow Y$. Let $a >_p c$ for a G-torsor $c : E \rightarrow Z$ with $\dim(Z) = e_d_p(G)$. Let $d : E \rightarrow S$ be the H-torsor associated to c. As $a >_p c$, we have $b >_p d$ and hence

\[
e_d_p(H) \leq \dim(S) - \dim(E) - \dim(H) = \dim(Z) + \dim(G) - \dim(H) = e_d_p(G) + \dim(G) - \dim(H).
\]

\[\square \]

4.1. Torsion primes and special groups. For a scheme X over F we let n_X denote the gcd $\deg(x)$ over all closed points $x \in X$.

Let G be an algebraic group scheme over F. A prime integer p is called a torsion prime for G if p divides n_E for a G-torsor $E \rightarrow \text{Spec} L$ over a field extension L/F (cf. [23 Sec. 2.3]).

An algebraic group scheme G over F is called special if for any field extension L/F, every G-torsor over Spec L is trivial. Clearly, special group schemes have no torsion primes.

The last statement of the following proposition was proven in [23 Prop. 5.3] in the case of algebraically closed field F.

Proposition 4.4. Let G be an algebraic group scheme over F. Then a prime integer p is a torsion prime for G if and only if $e_d_p(G) \neq 0$. An algebraic group scheme G is special if and only if $e_d(G) = 0$.

Proof. Let $p \geq 0$. Suppose that p is not a torsion prime for G if $p > 0$ or G is special if $p = 0$. Let $E \rightarrow \text{Spec} L$ be a G-torsor over $L \in \text{Fields}/F$. As p is relatively prime to n_E, there is a finite field extension E'/E such that the G-torsor E'_L is split and hence comes from a trivial G-torsor over F. It follows that $e_d_p(E) = 0$ and hence $e_d_p(G) = 0$.

Conversely, suppose that $e_d_p(G) = 0$ for $p \geq 0$. Assume that F is infinite. Choose a p-minimal p-generic G-torsor $E \rightarrow X$. We claim that n_E is relatively prime to p. Since $\dim(X) = e_d_p(G) = 0$, we have $X = \text{Spec} L$ for a finite field extension L/F. Let E' be a trivial G-torsor over F. As E is generic and the field F is infinite, we have $E' >_p E$, i.e., there is a finite field extension L'/L of degree prime to p such that $E'_L' \cong E'_L$. Thus E'_L' is trivial and hence n_E is relatively prime to p as n_E divides $[L' : L]$.

Let $\gamma : I \rightarrow \text{Spec} K$ be a G-torsor over a field extension K/F. We need to show that n_I is relatively prime to p. We may assume that $K \in \text{Fields}/F$. Choose
a model $c: J \to Z$ of γ, i.e., a G-torsor c with Z a model of K and γ the generic fiber of c. As a is generic, we have $c \geq a$, i.e., a fiber product diagram

$$
\begin{array}{ccc}
J & \xleftarrow{c} & J' \xrightarrow{e} E \\
\downarrow & \downarrow & \downarrow \\
Z & \xleftarrow{f} & Z' \xrightarrow{h} X.
\end{array}
$$

with f a dominant morphism of degree prime to p and a G-torsor c'. Let $I' \to \text{Spec} K'$ be the generic fiber of c'. Since n_I' divides n_E and n_E is relatively prime to p, the integer n_I' is also relatively prime to p. It follows that n_I is relatively prime to p since n_I divides $|K': K|n_I'$.

Now let F be a finite field and $\text{ed}_p(G) = 0$. If G is smooth and connected, then G is special (cf. [25]). In general, if G^o is the connected component of the identity and $G^o = G/G^\circ$, then the categories BG and BG^o are equivalent, in particular, $\text{ed}_p(G) = \text{ed}_p(G^o)$ and G and G^o have the same torsion primes. Thus, we may assume that $G = G^o$ is an étale group scheme. Let K/F be a finite splitting field of G, i.e., G_K is a finite constant group. Every torsion prime of G_K is a torsion prime of G and $\text{ed}_p(G_K) = 0$ by Proposition 4.4(1), so we may assume that G is a constant group.

We claim that the order of G is relatively prime to p. If not, let H be a finite subgroup of G of order p if $p > 0$ and of any prime order if $p = 0$. We have $\text{ed}_p(G) \geq \text{ed}_p(H) > 0$ by Corollary 4.8, a contradiction. Thus, $|G|$ is relatively prime to p. Then every G-torsor E (a Galois G-algebra) is split by a finite field extension of degree prime to p, i.e., n_E is relatively prime to p and p is not a torsion prime of G.

Theorem 4.5. Let G be an algebraic group scheme. Assume that either G is not special or F is infinite. Let $a: E \to X$ be a generic G-torsor and let d be the smallest dimension of the image of a rational G-equivariant morphism $E \to E$. Then $\text{ed}(G) = d - \dim(G)$.

Proof. Let $f: E \to E$ be a rational G-equivariant morphism. Denote by $f': X' \to X$ the corresponding rational morphism. Let Z be the closure of the image of f, so dimension of the image of f is equal to $\dim(Z) + \dim(G)$. There are morphisms $g: X' \to X$ and $h: X' \to Z$ with g a birational isomorphism such that $g^*(E) \simeq h^*(E|_Z)$, i.e., $a > (a|_Z)$. The statement of the theorem follows now from Proposition 4.11.

Corollary 4.6. Let G be an algebraic group scheme. Assume that either G is not special or F is infinite. Let $a: E \to X$ be a generic G-torsor. Then a is minimal if and only if every rational G-equivariant morphism $E \to E$ is dominant.

Remark 4.7. Corollary 4.6 fails for special groups over a finite field. Indeed, let G be the trivial group over a finite field and let X be the affine line with all rational points removed. Since X has no rational points, every rational morphism $X \to X$ is dominant. But the identity morphism of X, which is obviously a generic G-torsor, is not a minimal G-torsor as $\text{ed}(G) = 0$.

4.2. A lower bound. The following statement was proven in [3].

Theorem 4.8. Let $f: G \to H$ be a homomorphism of algebraic group schemes. Then for any H-torsor E over F, we have $\text{ed}_p(G) \geq \text{ed}_p(E/G) - \dim(H)$.
Proof. Let L/F be a field extension and let $x = (J, g, \alpha)$ be an object of E/G over Spec(L). Let $\beta : f_*(J) \to E$ be the isomorphism of H-torsors induced by α. Choose a field extension L'/L of degree prime to p and a subfield $K \subset L'$ over F such that $\text{tr.deg}_F(K) = \text{ed}_p(J)$ and there is a G-torsor I over K with $I_L \cong J_{L'}$.

We shall write Z for the scheme of isomorphisms $\text{Iso}_K(f_*(J), E_K)$ of H-torsors over K. Clearly, Z is a torsor over K for the twisted form $\text{Aut}_K(f_*(J))$ of H, so $\dim_K(Z) = \dim(H)$. The image of the morphism Spec $L' \to Z$ over K representing the isomorphism $\beta_{L'}$ is a one-point set $\{z\}$ of Z. Therefore, $\beta_{L'}$ and hence $x_{L'}$ are defined over $K(z)$. It follows that

$$\text{ed}_p(J) + \dim(H) = \text{tr.deg}_F(K) + \dim_K(Z) \geq \text{tr.deg}_F(K(z)) \geq \text{ed}_p(x).$$

Hence

$$\text{ed}_p(G) \geq \text{ed}_p(J) \geq \text{ed}_p(x) - \dim(H),$$

and $\text{ed}_p(G) \geq \text{ed}_p(E/G) - \dim(H)$. \qed

4.3. Essential dimension of spinor groups. Let Spin_n, $n \geq 3$, be the split spinor group over a field of characteristic 2. The following inequalities are proved in [3] Th. 3.3 if $n \geq 15$:

- $\text{ed}_2(\text{Spin}_n) \geq 2^{(n-1)/2} - n(n-1)/2$ if n is odd
- $\text{ed}_2(\text{Spin}_n) \geq 2^{(n-2)/2} - n(n-1)/2$ if $n \equiv 2 \pmod{4}$
- $\text{ed}_2(\text{Spin}_n) \geq 2^{(n-2)/2} + 1 - n(n-1)/2$ if $n \equiv 0 \pmod{4}$

Moreover, if $\text{char}(F) = 0$, then

- $\text{ed}_2(\text{Spin}_n) = \text{ed}(\text{Spin}_n) = 2^{(n-1)/2} - n(n-1)/2$ if n is odd
- $\text{ed}_2(\text{Spin}_n) = \text{ed}(\text{Spin}_n) = 2^{(n-2)/2} - n(n-1)/2$ if $n \equiv 2 \pmod{4}$
- $\text{ed}_2(\text{Spin}_n) \leq \text{ed}(\text{Spin}_n) \leq 2^{(n-2)/2} + n(n-1)/2$ if $n \equiv 0 \pmod{4}$

We improve the lower bound for $\text{ed}_2(\text{Spin}_n)$ in the case $n \equiv 0 \pmod{4}$.

Theorem 4.9. Let n be a positive integer divisible by 4 and Spin_n the split spinor group over a field F of characteristic different from 2. Let 2^k be the largest power of 2 dividing n. Then

$$\text{ed}_2(\text{Spin}_n) \geq 2^{(n-2)/2} + 2^k - n(n-1)/2.$$

Proof. The center C of the group $G = \text{Spin}_n$ is isomorphic to $\mu_2 \times \mu_2$. The factor group $H = G/C$ is the special projective orthogonal group (cf. [3]). An H-torsor over a field extension L/F determines a central simple algebra A with an orthogonal involution σ of trivial discriminant. The image of the map $C^* \to \text{Br}(L)$ is equal to $\{0, [A], [C^+], [C^-]\}$, where C^+ and C^- are simple components of the Clifford algebra $C(A, \sigma)$. By [3], there is a field extension L/F and an H-torsor E over L such that $\text{ind}(C^+) = \text{ind}(C^-) = 2^{(n-2)/2}$ and $\text{ind}(A) = 2^k$, the largest power of 2 dividing n. By Example 4.4,

$$\text{ed}_2(E/G) = \text{ind}(A) + \text{ind}(C^+) = 2^{(n-2)/2} + 2^k.$$

It follows from Theorem [3] that

$$\text{ed}_2(\text{Spin}_n) \geq \text{ed}_2(E/G) - \dim(H) = 2^{(n-2)/2} + 2^k - n(n-1)/2. \quad \Box$$
COROLLARY 4.10. If n is a power of 2 and $\text{char}(F) = 0$ then
\[
\text{ed}_2(\text{Spin}_n) = \text{ed}(\text{Spin}_n) = 2^{(n-2)/2} + n - n(n-1)/2.
\]

Below is the table of values $d_n := \text{ed}_2(\text{Spin}_n) = \text{ed}(\text{Spin}_n)$ over a field of characteristic zero (cf. [8]):

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>23</td>
<td>24</td>
<td>120</td>
<td>103</td>
<td>341</td>
<td></td>
</tr>
</tbody>
</table>

The torsors for Spin_n are essentially the isomorphism classes of quadratic forms in I^3, where I is the fundamental ideal in the Witt ring of F. A jump of the value of $\text{ed}(\text{Spin}_n)$ when $n > 14$ is probably related to the fact that there is no simple classification of quadratic forms in I^3 of dimension greater than 14.

5. Essential p-dimension of finite groups

Let G be a finite group. We consider G as a constant algebraic group over a field F. A G-torsor E over $\text{Spec}(L)$ for a field extension L/F is of the form $E = \text{Spec}(A)$, where A is a Galois G-algebra over L. Thus, the fibered category BG is equivalent to the category of Galois G-algebras over field extensions of F.

A generically free G-space is the same as a faithful G-space, i.e., a G-space V such that the group homomorphism $G \to \text{GL}(V)$ is injective. By Corollary 4.3, $\text{ed}(G) \leq \dim(V)$ for any faithful G-space V. The essential dimension $\text{ed}(G)$ can be smaller than dimension of every any faithful G-space V. For example, for the symmetric group S_n one has $\text{ed}(S_n) \leq n - 2$ if $n \geq 3$ (cf. [8, Th. 6.5]), whereas the least dimension of a faithful S_n-space is equal to $n - 1$. Note that the value of $\text{ed}(S_n)$ is unknown for $n \geq 7$.

Computation of the essential p-dimension of a finite group G for $p > 0$ is somewhat simpler. The following proposition shows that G can be replaced by a Sylow p-subgroup.

PROPOSITION 5.1. Let G be a finite group and $H \subset G$ a Sylow p-subgroup. Then $\text{ed}_p(G) = \text{ed}_p(H)$.

PROOF. By Corollary [4, 8], $\text{ed}_p(G) \geq \text{ed}_p(H)$. Let A be a Galois G-algebra over a field $L \in \text{Fields}/F$. Then the subalgebra A^H of H-invariant elements is an étale L-algebra of rank prime to p. Let $e \in A^H$ be an idempotent such that $K = A^H e$ is a field extension of L of degree prime to p. Then Ae is a Galois H-algebra over K. Choose a field extension K'/K of degree prime to p and a subfield $M \subset K$ over F such that there is a Galois H-algebra B over M with $B \otimes_M K' \simeq Ae \otimes_K K'$ and $\text{ed}_p(Ae) = \text{tr.deg}_F(M) \leq \text{ed}_p(H)$.

For any Galois H-algebra C we write \mathcal{C} for the algebra $\text{Map}_H(G, C)$ of H-equivariant maps $G \to C$. Clearly, \mathcal{C} has structure of a Galois G-algebra. Considering A as a Galois H-algebra over A^H, we have an isomorphism of Galois G-algebras
\[
A \otimes_L (A^H) \to \overline{A}
\]

taking $a \otimes a'$ to the map $f : G \to A$ defined by $f(g) = g(a)a'$. It follows that
\[
\mathcal{C} \otimes_M K \simeq \overline{\mathcal{C}} \otimes_K K' \simeq \overline{\mathcal{C}} \otimes_K K' \simeq A \otimes_L (A^H e) \otimes_K K' = A \otimes_L K'.
\]

Hence, A is p-defined over M and the essential p-dimension of the Galois G-algebra A is at most $\text{tr.deg}_F(M) \leq \text{ed}_p(H)$. It follows that $\text{ed}_p(G) \leq \text{ed}_p(H)$. \qed
By Proposition [23, (2)], the integer \(\text{ed}_p(G) \) does not change under field extensions of \(F \) of degree prime to \(p \). It follows then from Proposition [23] that \(\text{ed}_p(G) \leq \dim(V) \) for any faithful \(H \)-space \(V \) for a Sylow \(p \)-subgroup \(H \) of \(G \) over the field \(F(\xi_p) \), where \(\xi_p \) is a primitive \(p \)-th root of unity.

The following statement was proven in [32, Th. 4.1, Rem. 4.8].

Theorem 5.2. Let \(p \) be a prime integer and let \(F \) be a field of characteristic different from \(p \). Then the essential \(p \)-dimension \(\text{ed}_p(G) \) over \(F \) of a finite group \(G \) is equal to the least dimension of a faithful \(H \)-space of a Sylow \(p \)-subgroup \(H \) of \(G \) over the field \(F(\xi_p) \).

Proof. By Propositions [23] and [23] we may assume that \(G \) is a \(p \)-group and \(F \) contains a primitive \(p \)-th root of unity.

By Corollary [23] it suffices to find a faithful \(G \)-space \(V \) with \(\text{ed}_p(G) \geq \dim(V) \).

Denote by \(C \) the subgroup of all central elements of \(G \) of exponent \(p \) and set \(H = G/C \), so we have an exact sequence

\[
1 \to C \to G \to H \to 1.
\]

Let \(E = \text{Spec } F \) be an \(H \)-torsor over \(F \) and let \(C^* \) denote the character group \(\text{Hom}(C, G_m) \) of \(C \). The \(H \)-torsor \(E \) over \(F \) yields the homomorphism

\[
\beta^E : C^* \to \text{Br}(F)
\]

taking a character \(\chi : C \to G_m \) to the image of the class of \(E \) under the composition

\[
H^1(F, H) \xrightarrow{\partial} H^2(F, C) \xrightarrow{\chi} H^2(F, G_m) = \text{Br}(F),
\]

where \(\partial \) is the connecting map for the exact sequence (3). Note that as \(\mu_p \subset F^\times \), we can identify \(C \) with \((\mu_p)^s \), i.e., \(C \) is a diagonalizable group of exponent \(p \).

Consider the gerbe \(E/G \) banded by \(C \). The class of \(E/G \) in \(H^2(F, C) \) coincides with the image of the class of \(E \) under \(\partial \).

By Example [23], there is a basis \(\chi_1, \chi_2, \ldots, \chi_s \) of \(C^* \) such that

\[
\text{ed}_p(E/G) = \sum_{i=1}^s \text{ind} \beta^E(\chi_i).
\]

Now we choose a specific \(E \), namely a generic \(H \)-torsor over a field extension \(L \) of \(F \). Let \(\chi : C \to G_m \) be a character and \(\text{Rep}^{(\chi)}(G) \) the category of all \(G \)-spaces such that \(\psi = \chi(c)v \) for any \(c \in C \) and \(v \in V \). By Theorem [23],

\[
\text{ind} \beta^E(\chi) = \gcd \dim(V)
\]

over all \(G \)-spaces \(V \) in \(\text{Rep}^{(\chi)}(G) \). Note that dimension of every irreducible \(G \)-space is a power of \(p \). Indeed, let \(q \) be the order of \(G \). By [23, Th. 24], every irreducible \(G \)-space is defined over the field \(K = F(\mu_q) \). Since \(F \) contains \(p \)-th roots of unity, the degree \([K : F] \) is a power of \(p \). Let \(V \) be an irreducible \(G \)-space over \(F \). Write \(V_K \) as a direct sum of irreducible \(G \)-spaces \(V_j \) over \(K \). As each \(V_j \) is absolutely irreducible, \(\dim(V_j) \) divides \(q \) and hence \(\dim(V_j) \) is a power of \(p \). The group \(\Gamma = \text{Gal}(K/F) \) permutes transitively the \(V_j \). As \(|\Gamma| \) is a power of \(p \), the number of the \(V_j \)'s is also a power of \(p \).

Hence, the \(\gcd \) in (3) can be replaced by \(\min \). Therefore, for any character \(\chi \in C^* \), there is a \(G \)-space \(V_\chi \in \text{Rep}^{(\chi)}(G) \) such that \(\text{ind} \beta^E(\chi) = \dim(V_\chi) \). Let \(V \) be the direct sum of the \(V_\chi \)'s for \(i = 1, \ldots, s \). It follows from (5) that

\[
\text{ed}_p(E/G) = \dim(V).
\]
Applying Proposition 4.3(1) and Theorem 4.8 for the gerbe E/G over the field L, we get the inequality

$$\text{ed}_p(G) \geq \text{ed}_p(G_+) \geq \text{ed}_p(E/G) = \dim(V).$$

It suffices to show that V is a faithful G-space. Since the χ_i form a basis of C^*, the C-space V is faithful. Let N be the kernel of V. We have $N \cap C = \{1\}$. As every nontrivial normal subgroup of G intersects C nontrivially, it follows that $N = \{1\}$, i.e., the G-space V is faithful.

Corollary 5.3. Let G be a p-group and let F be a field containing p-th roots of unity. Then $\text{ed}(G)$ coincides with $\text{ed}_p(G)$ and is equal to the least dimension of a faithful G-space over F.

Proof. Let V be a faithful G-space of the least dimension. Then by Theorem 5.4 and Corollary 4.8,

$$\dim(V) = \text{ed}_p(G) \leq \text{ed}(G) \leq \dim(V).$$

The case of a cyclic group was considered in [10]:

Corollary 5.4. Let G be a cyclic group of a primary order p^n and let F be a field containing p-th roots of unity. Then $\text{ed}(G) = \text{ed}_p(G) = [F(\xi_{p^n}) : F]$.

Proof. The G-space $F(\xi_{p^n})$ with a generator of G acting by multiplication by ξ_{p^n} is a faithful irreducible G-space of the least dimension.

6. Appendix

6.1. Models.

For any $X \in \text{Var}/F$, the field $F(X)$ lies in Fields/F. Conversely, let $L \in \text{Fields}/F$. A model of L is a variety $X \in \text{Var}/F$ together with an isomorphism $F(X) \cong L$ over F. A morphism of two models X and X' of L is a (unique) birational isomorphism between X and X' preserving the identifications of the field $F(X)$ and $F(X')$ with L.

Let $K \subset L$ be a subfield and Y a model of K, so we have a morphism $\text{Spec} L \to Y$. Then there is a model X of L and a dominant morphism $f : X \to Y$ inducing the field embedding $K \hookrightarrow L$. Indeed, we can start with any model X of L and then replace it by the graph of the corresponding rational morphism $X \dashrightarrow Y$. The morphism f is called a model of the morphism $\text{Spec} L \to Y$.

Let p be a prime integer.

Lemma 6.1 (cf. [13, Lemma 3.3]). Let K be an arbitrary field, K'/K a finite field extension of degree prime to p, and $K \to L$ a field homomorphism. Then there exists a field extension L'/L of degree prime to p and a field homomorphism $K' \to L'$ extending $K \to L$.

Proof. We may assume that K' is generated over K by one element. Let $f(t) \in F[t]$ be its minimal polynomial. Since the degree of f is prime to p, there exists an irreducible divisor $g \in L[t]$ of f over L such that $\deg(g)$ is prime to p. We set $L' = L[t]/(g)$.

Lemma 6.2. Let $f : X' \to X$ be a morphism of varieties over F of degree prime to p. Then there is an open subvariety $U \subset X$ such that for every $x \in U$ there exists a point $x' \in X'$ with $f(x') = x$ and the degree $[F(x') : F(x)]$ prime to p.

Proof. Let $U \subset X$ be an open subvariety such that the restriction $f^{-1}(U) \to U$ of f is flat of degree d (prime to p). Then for every $x \in U$, the fiber $f^{-1}(x)$ is a finite scheme over $F(x)$ of degree d, i.e., $f^{-1}(x) = \text{Spec} A$ for an $F(x)$-algebra A of dimension d. The artinian ring A is a product of local rings A_i with maximal ideals P_i. We have

$$d = \sum \dim(A_i) = \sum \dim(A_i/P_i) \cdot l(A_i),$$

where $l(A_i)$ is the length of the A-module A_i and dimension is taken over $F(x)$. As d is prime to p, there is an i such that $\dim(A_i/P_i)$ is prime to p. The corresponding point $x' \in f^{-1}(x)$ satisfies the required conditions.

Lemma 6.3. Let $g : X \to Y$ and $h : Y' \to Y$ be morphisms of varieties over F. Let $y \in Y$ be the image of the generic point of X. Suppose that there is a point $y' \in Y'$ such that $h(y') = y$ and $[F(y') : F(y)]$ is prime to p. Then there exists a commutative square of morphisms of varieties

$$
\begin{array}{ccc}
X' & \to & X \\
\downarrow m & & \downarrow g \\
Y' & \to & Y
\end{array}
$$

with m dominant of degree prime to p.

Proof. We view the residue field $F(y)$ as a subfield of the fields $F(X)$ and $F(y')$. By Lemma [13], there is a field extension L of $F(X)$ and $F(y')$ such that $[L : F(X)]$ is prime to p. The natural morphisms $\text{Spec} L \to X$ and $\text{Spec} L \to Y'$ yield a morphism $\text{Spec} L \to X \times_Y Y'$. Clearly, a model $X' \to X \times_Y Y'$ of this morphism together with the projections $m : X' \to X$ and $l : X' \to Y'$ fit in the required diagram.

6.2. Valuations and places. A geometric valuation of a field $L \in \text{Fields}/F$ is a valuation v of L over F with residue field $F(v)$ such that $\text{rank}(v) = \text{tr. deg}_F(L) - \text{tr. deg}_F F(v)$. The residue field of a geometric valuation is necessarily finitely generated over F (cf. [21]).

Let L and K be field extensions of F. An F-place $\pi : K \to L$ is a local ring homomorphism $R \to K$ of a valuation ring R in L containing F. The ring R is called the valuation ring of π. We say that π is geometric is the valuation of R is geometric.

If $\pi : L \to K$ and $\rho : M \to L$ are two places, then the composition of places $\pi \circ \rho : M \to K$ is defined. If π and ρ are geometric, then so is $\pi \circ \rho$.

A geometric place is a composition of places with discrete geometric valuation rings.

Lemma 6.4. Let $L \in \text{Fields}/F$, let v be a geometric valuation of L over F and let L'/L be a finite field extension of degree prime to p. Then there exists a geometric valuation v' of L' extending v such that the degree of the residue field extension $F(v')/F(v)$ is prime to p.

Proof. If L'/L is separable and v_1, \ldots, v_k are all the extensions of v on L', then $[L' : L] = \sum e_i [F(v_i) : F(v)]$ where e_i is the ramification index (cf. [21], Ch. VI, Th. 20 and p. 63). It follows that the integer $[F(v_i) : F(v)]$ is prime to p for some i.

Choose a regular system of parameters. Let \(L \) be the generic fiber of the field \(K \) places. We set \(F \) valuation ring with quotient field \(F \). Set \(F(X) = F_0 \to F_1 \to \cdots \to F_n = F(x) \) is a geometric valuation satisfying the required conditions.

Proof. Choose a regular system of parameters \(a_1, a_2, \ldots, a_n \) in the regular local ring \(R = O_{X,F} \). Let \(M_i \) be the ideal of \(R \) generated by \(a_1, \ldots, a_n \). Set \(R_i = R/M_i \) and \(P_i = M_{i+1}/M_i \). Denote by \(F_i \) the quotient field of \(R_i \); in particular, \(F_0 = F(X) \) and \(F_n = F(x) \). The localization ring \((R_i)_{P_i} \) is a discrete geometric valuation ring with quotient field \(F_i \) and residue field \(F_{i+1} \), therefore it determines a geometric place \(F_i \to F_{i+1} \). The valuation corresponding to the composition of places

\[
F(X) = F_0 \to F_1 \to \cdots \to F_n = F(x)
\]

is a geometric valuation satisfying the required conditions.

6.3. Indices of algebras. Let \(G \) be a finite group and \(C \) a central subgroup. We set \(H = G/C \). Let \(W \) be a faithful \(H \)-space and \(W' \) an open subset of the affine space of \(W \) where \(H \) acts freely, so that there is an \(H \)-torsor \(\pi : W' \to Y \). Let \(E \) be the generic fiber of the \(H \)-torsor \(\pi \). It is a generic \(H \)-torsor over the function field \(L = F(Y) \). Consider the homomorphism \(\beta^E : C^* \to Br(F) \) defined in (4).

Let \(\chi : C \to G_m \) be a character and let \(\operatorname{Rep}(\chi)(G) \) be the category of all \(G \)-spaces such that \(v^c = \chi(c)v \) any \(c \in C \) and \(v \in V \).

Theorem 6.7. Let \(G \) be a finite group and let \(C \) be a central subgroup of \(G \). Assume that \(|C| \) is not divisible by \(\operatorname{char} F \). Set \(H = G/C \) and let \(E \) be a generic \(H \)-torsor. Then for any character \(\chi \in C^* \), we have \(\operatorname{ind}_{H} \beta^E(\chi) = \gcd \dim(V) \) over all \(G \)-spaces \(V \) in \(\operatorname{Rep}(\chi)(G) \).

In the rest of the section we give a proof of this theorem.

Let \(S \) be a commutative ring and \(H \) a finite group acting on \(S \) (on the right) by ring automorphisms. Set

\[
R = S^H := \{ s \in S \text{ such that } s^h = s \text{ for all } h \in H \}
\]

and denote by \(S \star H \) the crossed product with trivial factors. Precisely, \(S \star H \) consists of formal sums \(\sum_{h \in H} h s_h \) with \(s_h \in S \). The product is given by the rule \((hs)(h't') = (hh')(s^h t') \).

Let \(M \) be a (right) \(S \)-module. Suppose that \(H \) acts on \(M \) on the right such that \((ms)^h = m^h s^h\). Then \(M \) is a right \(S \star H \)-module by \(m(hs) = m^h s \). Conversely, a right \(S \star H \)-module is a right \(S \)-module together with a right \(H \)-action as above. If \(M \) is a right \(S \star H \)-module, then the subset \(M^H \) of \(H \)-invariant elements in \(M \) is an \(R \)-module. We have a natural \(S \)-module homomorphism \(M^H \otimes_R S \to M \), \(m \otimes s \mapsto ms \).
We say that S is a Galois H-algebra over R is the morphism Spec $S \to$ Spec R is an H-torsor.

Proposition 6.8. (cf. [M]) The following are equivalent:

1. S is a Galois H-algebra over R.
2. The morphism Spec $S \to$ Spec R is an H-torsor.
3. For any $h \in H$, $h \neq 1$, the elements $s^h - s$ with $s \in S$ generate the unit ideal in S.
4. For every left $S \ast H$-module M, the natural map $M^H \otimes_R S \to M$ is an isomorphism.

Corollary 6.9. Let S be an Galois H-algebra over R. Then the functors between the categories of finitely generated right modules

$$M(R) \to M(S \ast H), \quad N \mapsto N \otimes_R S$$

$$M(S \ast H) \to M(R), \quad M \mapsto M^H$$

are equivalences inverse to each other.

Proof of Theorem 6.8. Let W be a faithful H-space. Let S denote the symmetric algebra of the dual space W^*. The group H acts on S. Set $R = S^H$, $Y = \text{Spec}(R)$ and $L = F(Y)$ the quotient field of R.

For any $h \in H$, $h \neq 1$, there is a linear form $\varphi_h \in W^*$ satisfying $(\varphi_h)^h \neq \varphi_h$. Set

$$r = \prod_{h,h' \in H, h \neq 1} ((\varphi_h)^{hh'} - (\varphi_h)^{h'})$$

in S. We have $r \in R$ and $r \neq 0$. For any $h \neq 1$, the element $(\varphi_h)^h - \varphi_h$ is invertible in the localization ring S_r. By Proposition 6.8, the localization ring S_r is a Galois H-algebra over R_r.

Let $\chi : C \to \mathbf{G}_m$ be a character of C. Note that G acts upon S via the group homomorphism $G \to H$, so we have the ring $S \ast G$ defined. We write $M^{(\chi)}(S \ast G)$ for the full subcategory of $M(S \ast G)$ consisting of all modules M with $m^c = \chi(c)m$ for all $m \in M$ and $c \in C$. We also write $K_0^{(\chi)}(S \ast G)$ for the Grothendieck group of $M^{(\chi)}(S \ast G)$. Note that $K_0^{(\chi)}(S \ast G)$ is a natural direct summand of $K_0(S \ast G)$.

Fix a G-space $U \in \text{Rep}^{(\chi)}(G)$ and set $U_{S_r} = U \otimes_F S_r$. We have

$$\text{End}(U) \otimes_R S_r \simeq \text{End}_{S_r}(U_{S_r}).$$

The conjugation G-action on $\text{End}(U)$ factors through an H-action. Consider the algebra $A = \text{End}_{S_r}(U_{S_r})^H$ over R_r. By Proposition 6.8(4),

$$A \otimes_{R_r} S_r \simeq \text{End}_{S_r}(U_{S_r}),$$

hence A is an Azumaya R_r-algebra (by descent, as S_r is a faithfully flat R_r-algebra).

Recall that $L = F(Y)$ is the quotient field of R. Set

$$A = A \otimes_{R_r} L.$$

Clearly, A is a central simple algebra over L of degree $\dim U$. We also have

$$A = (\text{End}(U) \otimes_F L')^H,$$

where L' is the quotient field of S. Moreover, $[A] = \beta_E(\chi)$ in $\text{Br}(L)$.

The localization in algebraic K-theory provides a surjective homomorphism

$$(7) \quad K_0(A) \to K_0(A).$$
By Corollary 6.10, the category of right A-modules and right $\text{End}_{S_r}(U_{S_r}) \star H$-modules are equivalent. Thus the functor $M \mapsto M^H$ induces an isomorphism

$$K_0(\text{End}_{S_r}(U_{S_r}) \star H) \sim K_0(A).$$

The category of right $\text{End}_{S_r}(U_{S_r}) \star H$-modules is equivalent to the subcategory of right $\text{End}_{S_r}(U_{S_r}) \star G$-modules with the group G acting trivially. Hence we have an isomorphism

$$K_0^{(1)}(\text{End}_{S_r}(U_{S_r}) \star G) \sim K_0(\text{End}_{S_r}(U_{S_r}) \star H).$$

By Morita equivalence, the functors

$$M(S_r \star G) \rightarrow M(\text{End}_{S_r}(U_{S_r}) \star G), \quad N \mapsto N \otimes_F U^*$$

$$M(\text{End}_{S_r}(U_{S_r}) \star G) \rightarrow M(S_r \star G), \quad M \mapsto M \otimes_{\text{End}(U)} U$$

are equivalences inverse to each other. Moreover, under these equivalences, the subcategory $M^{(\chi)}(S_r \star G)$ corresponds to $M^{(1)}(\text{End}_{S_r}(U_{S_r}) \star G)$. Hence we get an isomorphism

$$K_0^{(\chi)}(S_r \star G) \sim K_0^{(1)}(\text{End}_{S_r}(U_{S_r}) \star G).$$

By localization, we have a surjection

$$K_0^{(\chi)}(S \star G) \rightarrow K_0^{(\chi)}(S_r \star G).$$

The ring S is graded with $S_0 = F$. We view the ring $B = S \star G$ as a graded ring with $B_0 = F \star G = FG$ (the group algebra). Note that B is a free left B_0-module. As the global dimension of the polynomial ring S is finite, we can choose a finite projective resolution $P^* \rightarrow F$ of the S-module $F = S_0$. Since B is a free right S-module, $B \otimes_S P^* \rightarrow B \otimes_S F$ is a finite projective resolution of the left B-module $B \otimes_S F = FG = B_0$. Hence B_0 has finite Tor-dimension as a left B-module.

Therefore, B satisfies the conditions of the following theorem:

Theorem 6.10. [20], Th. 7] Let $B = \prod_{i \geq 0} B_i$ be a graded Noetherian ring. Suppose:

1. B is flat as a left B_0-module,
2. B_0 is of finite Tor-dimension as a left B-module.

Then the exact functor $M(B_0) \rightarrow M(B)$ taking an M to $M \otimes_{B_0} B$ yields an isomorphism

$$K_0(B_0) \sim K_0(B).$$

By Theorem 6.10 applied to the graded ring $B = S \star G$, there is a canonical isomorphism

$$K_0(\text{Rep}(G)) = K_0(FG) = K_0(B_0) \sim K_0(B) = K_0(S \star G).$$

Moreover, this isomorphism takes $K_0(\text{Rep}^{(\chi)}(G))$ onto $K_0^{(\chi)}(S \star G)$, i.e., we have an isomorphism

$$K_0(\text{Rep}^{(\chi)}(G)) \sim K_0^{(\chi)}(S \star G).$$

The surjective composition $K_0(\text{Rep}^{(\chi)}(G)) \rightarrow K_0(A)$ of the surjective maps (4)-(12) takes the class of a G-space $V \in \text{Rep}^{(\chi)}(G)$ to the class of the right A-module

$$(V \otimes_F U^* \otimes_F L')^H$$
of dimension \(\dim(V) \cdot \dim(U) \) over the field \(L \). On the other hand, the group \(K_0(A) \) is infinite cyclic group generated by the class of a simple module of dimension \(\text{ind}(A) \cdot \dim(U) \) over \(L \). The result follows.

References

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: merkurev@math.ucla.edu