THE GROUP OF K₁-ZERO-CYCLES ON SEVERI-BRAUER VARIETIES

A. S. Merkurjev and A. A. Suslin
St. Petersburg Department of Mathematical Institute
St. Petersburg 198904, Russia

For any algebraic variety X of dimension d over a field F, one can define the following complex [7]:

$$
\bigcup_{x \in X^0} K_n F(x) \rightarrow \bigcup_{x \in X^1} K_{n-1} F(x) \rightarrow \cdots \rightarrow \bigcup_{x \in X^d} K_{n-d} F(x)
$$

where X^i is the set of points of codimension i in X. Cohomology groups of this complex we'll denote by $H^i(X,K_n)$ and call K-cohomology groups. In particular, the group $H^i(X,K_i)$ coincides with the Chow group of the cycles of codimension i [7]. The group of K_n-zero-cycles $H^d(X,K_{n+d})$ we'll denote by $H_0(X,K_n)$.

Let X be a Severi-Brauer variety associated with a central simple F-algebra D [2]. In the case when the index of D is a prime number, some K-cohomology groups were computed in [3]. The group of zero-cycles $H_0(X,K_0)$ was computed in [5] for any Severi-Brauer variety X. The present paper is devoted to the computation of the group $H_0(X,K_1)$ also for any Severi-Brauer variety X.

For any $n \geq 0$ we construct a homomorphism

$$p_n: H_0(X,K_n) \rightarrow K_n D.$$

The result of Panin mentioned above shows that p_0 is an isomorphism. It is not difficult to show that for $n \geq 3$ in general p_n is neither injective nor surjective. The main result of the present paper is the proof of bijectivity of p_1. It seems reasonable
that p_2 is also always an isomorphism. (At least this is true for one-dimensional Severi-Brauer varieties).

The paper is organized as follows. In the first section the technique of specialization is developed. In Section 2 we define the homomorphism p_n (the definition of p_0 and p_1 is possible without using the higher algebraic K-theory). The rest of the paper is devoted to the construction of the inverse map to p_1 which at first is defined with help of the technique of specialization of some "dense" subset (Section 3) and then is extended to the whole group $K_1 D$.

Some words about notation. If X is a variety over a field F, D is any F-algebra then for any commutative F-algebra B we write:

$$X_B = X \times \text{Spec}B, D_B = D \otimes_F B.$$

1. Specialization

In this section we develop the technique which will be used in consequence. Let X be an algebraic variety over a field F, R be an F-algebra which is a discrete valuation ring with residue field k and fraction field K, $\pi \in R$ be any prime element, and D be a central simple F-algebra. We construct the homomorphisms of specialization in the following three situations:

1. The category of coherent X_K-modules $M(X_K)$ is equivalent to the factor category $M(X_R)/B$, where B is the full subcategory in $M(X_A)$ consisting of the sheaves with support in $X_k \subset X_R$ [1]. Hence we can define the following connecting homomorphisms [7]:

$$\partial: K^\cdot_{+1}(X_K) \to K^\cdot(B) = K^\cdot(X_k).$$

The composition

$$s_\pi: K^\cdot(X_K) \to K^\cdot_{+1}(X_K) \xrightarrow{\partial} = K^\cdot(X_k).$$
where the first homomorphism is the multiplication by the
inverse image of the prime element π in the map
$K_1(K) \to K_1(X_k)$ is called the specialization homomorphism.

2. The category of finitely generated D_K-modules D_K-mod is
equivalent to the factor category D_R-mod//C, where C is the full
subcategory in D_R-mod, consisting of all torsion D_R-modules.
Hence we can define the following connecting homomorphism
[7]:

$$\partial: K_{*+1} + (D_k) \to K_*(C) = K_*(D_k).$$

The composition

$$s_{\pi}: K_*(D_K) \to K_{*+1}(D_K) \to K_*(D_k),$$

where the first homomorphism is the multiplication by the
prime element π is also called the specialization homomorphism.

3. The exact sequence of complexes

$$0 \to \bigcup_{x \in X_{k,*+1}} K_*F(x) \to \bigcup_{x \in X_{k,*}} K_*F(x) \to \bigcup_{x \in X_k} K_*F(x) \to 0$$

induces the following connecting homomorphism

$$\partial: H^i(X_K, K_{*+1}) \to H^i(X_k, K_*).$$

The composition

$$s_{\pi}: H^i(X_K, K_*) \to H^i(X_K, K_{*+1}) \xrightarrow{\partial} H^i(X_k, K_*),$$
where the first homomorphism is the multiplication by $\pi \in H^0(X, K_1)$ is also called the specialization homomorphism.

Let $u \in H^i(X, K_1)$; for any field extension L/F by $u_L \in H^i(X_L, K_1)$ we denote the image of u under the homomorphism $H^i(X, K_1) \to H^i(X_L, K_1)$.

Lemma 1. For any prime element π of the ring R the equality $s_\pi(u_K) = u_k$ holds.

Proof. By the product formula $s_\pi(u_K) = \partial(u_{K^*}\pi) = u_k \cdot \partial(\pi) = u_k$

since $\partial(\pi) = 1 \in H^0(X, K_0)$.

Example. Let C be an irreducible curve over the field F, $c \in C$ be a nonsingular point, $R = 0_{C,c}$ be the local ring of the point c. In this case $k = F(c)$, $K = F(C)$ and we have the following

Corollary. For any nonsingular rational point $c \in C$, prime element $\pi \in 0_{C,c}$ and $u \in H^i(X, K_1)$ the equality $s_\pi(u_{F(c)}) = u$ holds, i.e. the result of the specialization in this case does not depend on the choice of c and π.

The category $M(X)$ has the following filtration:

$M(X)_0 \subset M(X)_1 \subset \ldots \subset M(X)_d = M(X)$ where $d = \dim X$ and $M(X)_i$ is the full subcategory in $M(X)$ consisting of all sheaves G such that $\dim \text{supp } G \leq i$. Since $K_*(M(X)_i/M(X)_{i-1}) = \bigcup_{x \in X_i} K_* F(x)$ [7] the inclusion $M(X)_0 \subset M(X)$ induces the homomorphism $t: H^0(X, K_1) \to K^*(X)$.

Lemma 2. For any discrete valuation ring R with the fraction field K and the residue field k for any prime element $\pi \in R$ the following diagram
$$H_0(X_K, K^*) \xrightarrow{t} K^*(X_K) \quad \downarrow s_\pi \quad \downarrow s_\pi$$

$$H_0(X_k, K^*) \xrightarrow{t} K^*(X_k)$$

is commutative.

Proof. It is clearly sufficient to prove the commutativity of the following diagram:

$$H_0(X_K, K^*_{+1}) \xrightarrow{t} K^*_{+1}(X_K) \quad \downarrow \partial' \quad \downarrow \partial''$$

$$H_0(X_k, K^*) \xrightarrow{t} K^*(X_k).$$

Since $M(X_R)_0 = M(X_k)_0$ the functor $M(X_R)_1 \rightarrow M(X_R) \rightarrow M(X_K)$ induces the functor $M(X_R)_1/M(X_R)_0 \rightarrow M(X_K)_0 \rightarrow M(X_K)$. Therefore we have the following commutative diagram

$$M(X_R)_0 \rightarrow M(X_R)_1 \rightarrow M(X_R)_1/M(X_R)_0$$

$$\quad \uparrow \quad \uparrow \quad \downarrow$$

$$M(X_R)_0 \downarrow \quad M(X_K)_0 \downarrow$$

$$M(X_k) \rightarrow M(X_R) \rightarrow M(X_K),$$

which induces the commutative diagram

$$K^*_{+1}(M(X_R)_1/M(X_R)_0) \xrightarrow{\partial} K^*(M(X_R)_0) \quad \uparrow$$

$$\downarrow$$

$$K^*_{+1}(M(X_K)_0) \quad K^*(M(X_k)_0) \quad \downarrow$$

$$K^*_{+1}(X_K) \quad \partial'' \quad \rightarrow \quad K^*(X_k).$$
By definition of ∂' the following diagram

\[
\begin{array}{ccc}
K_{*+1}(M(X_R)_1/M(X_R)_0) & \xrightarrow{\partial} & K_{*}(M(X_R)_0) \\
\downarrow & & \parallel \\
K_{*+1}(M(X_K)_0) & \xrightarrow{\partial} & K_{*}(M(X_K)_0) \\
\downarrow & & \downarrow \\
H_0(X_K,,K_{*+1}) & \xrightarrow{\partial'} & H_0(X_K,K_{*})
\end{array}
\]

is commutative. Comparing the two last diagrams we get the result we need.

2. The definition of $p_n: H_0(X(D),K_n) \to K_nD$

Let $X = X(D)$ be a Severi-Brauer variety over a field F, associated to the central simple F-algebra D of dimension n^2, J be the canonical locally free O_X-module of rank n, and $D = \text{End}_X(J)$ [7,9].

For any commutative F-algebra B consider the full subcategory $M'(X_B)$ in $M(X_B)$ consisting of X_B-modules G such that $R^i f_*(J \otimes_X G) = 0$ for any $i > 0$, where $f: X_B \to \text{Spec} B$ is the structural morphism. By this theorem of Quillen [7] the inclusion $M'(X_B)$ in $M(X_B)$ induces an isomorphism $K_*(M'(X_B)) \to K_*(X_B)$.

It is clear that for any $G \in M(X_B)$ B-module $f_*(J \otimes_X G)$ has a structure of the left D_B-module. The exact functor

\[j_B: M'(X_B) \to D_B - \text{mod}, G \mapsto f_*(J \otimes_X G) \]

induces the homomorphism $K_*(M'(X_B)) \to K_*(D_B)$. We define p_B as a composition.
The Group of K_1-Zero-Cycles on Severi-Brauer Varieties

\[p_B: H_0(X_B, K^*) \xrightarrow{i} K^*(X_B) = K^*(M'(X_B)) \to K^*(D_B) \]

Let R be a discrete valuation ring with the fraction field K and the residue field k, and $\pi \in R$ be any prime element. The following statement shows that the homomorphism p_K and p_k are compatible with the specialization.

Proposition 1. The diagram

\[
\begin{array}{ccc}
H_0(X_K, K^*) & \xrightarrow{p_K} & K^*(D_K) \\
\downarrow{s_\pi} & & \downarrow{s_\pi} \\
H_0(X_k, K^*) & \xrightarrow{p_k} & K^*(D_k)
\end{array}
\]

is commutative.

Proof. By Lemma 2 it is sufficient to prove that the following diagram is commutative

\[
\begin{array}{ccc}
K_{\ast+1}(X_K K) & \to & K_{\ast+1}(D_K) \\
\downarrow{\partial} & & \downarrow{\partial} \\
K^*(X_k) & \to & K^*(D_k).
\end{array}
\]

But this follows from the commutative diagram of functors

\[
\begin{array}{ccc}
M'(X_k) \to & M'(X_R) \to & M'(X_K) \\
\downarrow{j_k} & \downarrow{j_R} & \downarrow{j_K} \\
D_k - \text{mod} \to & D_R - \text{mod} \to & D_k - \text{mod}.
\end{array}
\]

Let now $B = F, x \in X$ be any closed point. We want to compute the following composition

\[r_x: K_*(F(x)) \to H_0(X, K^*) \xrightarrow{p} K^*(D), \]
where $p = p_F$. Consider the diagram of functors
\[
\begin{array}{ccc}
F(x)\text{-mod} & \to & D_F(x)\text{-mod} \\
\downarrow i_* & & \downarrow \\
M'(X) & \overset{j}{\to} & D\text{-mod},
\end{array}
\]

where $i: \text{Spec} F(x) \to X$ is the closed immersion, right functor is induced by the inclusion $D \subset D_F(x)$ and the top arrow sends $F(x)$-module M to $D_{F(x)}$-module $j(x) \otimes_{F(x)} M$.

Since $\dim_{F(x)} j(x) = n$, $j(x)$ is a simple $D_{F(x)}$-module and therefore the top arrow is the equivalence of categories. The commutativity of the diagram following from the natural isomorphism $j \otimes_x (i_* M) = i_* \left(j(x) \otimes_{F(x)} M \right)$ for any $F(x)$-module M shows that r_x is induced by the functor
\[
F(x)\text{-mod} \to D\text{-mod}; M \mapsto j(x) \otimes_{F(x)} M
\]

and therefore can be decomposed as follows:
\[
r_x: K^* F(x) \to K^* D_{F(x)} \to K^*(D),
\]

where the first map is an isomorphism induced by the equivalence of categories and the second map is the homomorphism of transfer.

Let now D be a skew field and x be a point of degree n. We embed $F(x)$ in D as a maximal subfield. Since $F(x)$-modules $j(x)$ and D are isomorphic, $j(x) \otimes_{F(x)} M = D \otimes_{F(x)} M$ for any $F(x)$-module M and therefore the homomorphism $r_x: K^* F(x) \to K^*(D)$ is induced by the inclusion of $F(x)$ in D.

Lemma 3. If D is split then $p: H_0(X,K^*) \to K^*(D)$ is an isomorphism.
Proof. In this case $X = PF^{n-1}$ is the projective space. Let $x \in X$ be any rational point. In the commutative diagram

\[
\begin{array}{ccc}
K \cdot F(x) & \xrightarrow{\sim} & K \left(D_F(x) \right) \\
\downarrow & & \downarrow \\
H_0(X, K) & \xrightarrow{p} & K \cdot D
\end{array}
\]

the vertical maps are isomorphisms since X is a projective space [8], $F(x) = F$ and therefore p is an isomorphism too.

Now we formulate the main result of the present paper.

Theorem. Let X be a Severi-Brauer variety corresponding to the central simple algebra D. Then the homomorphism $p_1: H_0(X, K_1) \to K_1(D)$ is an isomorphism.

The rest of the paper is devoted to the proof of this theorem.

3. The map $q: S(D) \to H_0(X(D), K_1)$

The idea is to construct the inverse map to $p = p_1$. In this section we build the "first approach" of this inverse map.

Let R be a commutative ring, B be an Azumaya algebra over R of rank n^2, and $X = X(B)$ be a Severi-Brauer scheme associated to B. For any commutative R-algebra S the set $X(S)$ of S-points of X coincides with the set of direct summands of the rank n of S-module $B \otimes_R S$ which are right ideals [9].

Let $A \subset B$ be a commutative R-subalgebra in B. Considering B as an A-module with respect to the right multiplication define the following homomorphism

\[f: B \otimes_R A \to \text{End}_A(B); f(x \otimes a)(b) = xba. \]

Suppose that
1. A is the direct summand of the A–module B.
2. f is an isomorphism.

Then A–module $B = \text{Hom}_A(A,B)$ is the direct summand of the projective A–module $\text{End}_A(B) = B \otimes R A$ and therefore is projective. Since f is an isomorphism, rank $_AB = n$. Hence $\text{Hom}_A(B,A)$ is the right ideal of rank n and the direct summand in $\text{End}_A(B) = B \otimes R A$ and therefore defines the element in the set of points $X(A)$, i.e. the morphism $\text{Spec}A \to X$.

Note that this construction is functional: for any R–algebra S the subalgebra $A \otimes R S$ in $B \otimes R S$ satisfies the conditions 1 and 2 and the corresponding morphism $\text{Spec}(A \otimes_R S) \to X_S$ is the base change in the morphism $\text{Spec}A \to X$.

Let D be a central skewfield of dimension n^2 over a field F, $L \subset D$ be a maximal subfield. Then the subalgebra $A = L$ satisfies 1 and 2 [6] and therefore defines the morphism $\text{Spec}L \to X = X(D)$. Denote by $x \in X$ the image of the unique point in $\text{Spec}L$. Since the field $F(x)$ splits D, we have $[F(x):F] \geq n$. On the other hand, our morphism induces the embedding $F(x)$ in L. Therefore this embedding is an isomorphism. We'll denote the point x by $[L]$. So $[L]$ is the closed point of degree n with the residue field isomorphic to L.

Let $u \in D$; the ring $F[u]$ generated by u over F is a subfield in D. We define the set $S(D)$ of all elements $u \in D^*$ such that $F[u]$ is the maximal subfield in D. Since there exists a separable over F maximal subfield [6] and this subfield is generated by one element, the set $S(D)$ is not empty. Note also that $u \in S(D)$ if and only if Cayley-Hamilton polynomial of u [4] is irreducible.

Define the following map:

$$q : S(D) \to H_0(X,K_1)$$

by the formula $q(u) = u[L]$ where $L = F[u]$ (we identify L and the residue field of the point $[L]$).
Lemma 4. For any \(u \in S(D) \) the following equality holds:

\[
p(q(u)) = u \mod [D^*, D^*] \in K_1D = D^*/[D^*, D^*].
\]

Proof. Let \(x = [L] \); the results of Section 2 imply that the composition \(L^* = F(x)^* \mapsto H_0(X, K_1) \mapsto K_1(D) \) is induced by the embedding \(L \) to \(D \). Therefore \(p(q(u)) = p(ux) = u \mod [D^*, D^*] \) in \(K_1D \).

Now consider the behavior of \(q \) under the specialization. We take an affine line \(A^1 = \text{Spec} F[T] \), rational point \(T = t \in F \) with a local ring \(R = F(T)_{(T-t)} \) and the prime element \(\pi = T - t \). It is clear that \(R/\pi R = F \) and \(F(T) \) is the fraction field of \(R \). Consider the specialization map \(s_\pi \) associated with the discrete valuation ring \(R \).

Proposition 2. Let \(S_t \) be the set of all polynomials \(u(T) \in D[T] \) such that \(u(t) \in S(D) \). Then \(S_t \subset S(D) \) and we have commutative diagram

\[
\begin{array}{ccc}
S_t & \longrightarrow & S(D) \\
\downarrow q_{F(T)} & & \downarrow q \\
H_0(X(D_{F(T)}), K_1) & \xrightarrow{s_\pi} & H_0(X(D), K_1)
\end{array}
\]

where the above homomorphism is the "value in the point \(T = t \)."

Proof. Let \(u(T) \in S_t, P(T, X) \in F[T, X] \) be Cayley-Hamilton polynomial of \(u(T) \) as an element of Azumaya algebra \(D[T] \) over \(F[T] \). Since the polynomial \(P(t, X) \) is irreducible, \(P(T, X) \) is also irreducible and \(u(T) \in S(D(T)) \).

The homomorphism \(s_\pi \) coincides with the composition
\[H_0 \left(X \left(D_{F(T)}, K_1 \right) \right) \xrightarrow{\pi} H_0 \left(X \left(D_{F(T)}, K_2 \right) \right) \xrightarrow{\partial} H_0 \left(X(D), K_1 \right). \]

Hence it is sufficient to prove the equality \(\partial([u(T), T-t][E]) = u(t)[L] \) where \(E = F(T)[u(T)], L = F[u(t)] \).

Denote the ring \(R[u(T)] \) by \(A \). It is clear that \(A \) is a discrete valuation ring with the prime element \(\pi \), fraction field \(E \) and residue field \(L \). We consider \(A \) as a commutative subalgebra in Azumaya \(R \)-algebra \(B = D \otimes_F R \) and show that the canonical homomorphism \(f: B \otimes_R A \to \text{End}_A(B) \) is an isomorphism. \(L \) is the maximal subfield in \(D \), hence \(f \) is an isomorphism modulo maximal ideal of \(R \) and by Lemma of Nakayama \(f \) is surjective. Since \(E \) is the maximal subfield in \(D(T) \), the localization \(S^{-1}f \) with respect to the multiplicative set \(S \) of nonzero elements in \(R \) is an isomorphism. Therefore \(f \) is injective and hence is an isomorphism.

Since \(A/\pi A \cong B/\pi B \) \(A \)-module \(B/A \) is torsionfree and therefore \(B/A \) is free \(A \)-module and \(A \) the direct summand in \(B \).

So we have shown that algebra \(B \) and commutative subalgebra \(A \) satisfy the conditions 1 and 2 and define the morphism \(\text{Spec} A \to X(B) \). The functional property gives us the commutative diagram

\[
\begin{array}{ccc}
\text{Spec}L = \text{Spec} A/\pi A & \to & X(B/\pi B) = X(D) \\
\downarrow & & \downarrow \\
\text{Spec}A & \to & X(B) \\
\uparrow & & \uparrow \\
\text{Spec}E = \text{Spec}(S^{-1}A) & \to & X(S^{-1}B) = X(D(T))
\end{array}
\]

which induces the following commutative diagram
\[K_2 E = H_0(\text{Spec} E, K_2) \rightarrow H_0\left(\mathbb{X}(D_{F(T)}), K_2 \right) \]
\[\downarrow \vartheta \quad \downarrow \vartheta' \quad \downarrow \vartheta'' \]
\[K_1 L = H_0(\text{Spec} L, K_1) \rightarrow H_0(\mathbb{X}(D), K_1) \]

where \(\vartheta \) is the tame symbol associated to a discrete valuation ring \(A \). In particular \(\vartheta(\{ u(T), T-t \}) = u(t) \).

Consider another example of the specialization.

Proposition 3. Let \(K \subset D \) be a maximal subfield, \(u(T) \in K[T], u(t) \neq 0 \). Then \(s_n(u(T)[K(T)]) = u(t)[K] \).

Proof. The functional property gives us the commutative diagram

\[
\begin{array}{ccc}
\text{Spec} K(T) & \rightarrow & X_{F(T)} \\
\downarrow & & \downarrow j \\
\text{Spec} K & \rightarrow & X
\end{array}
\]

Denote \([K]\) by \(x \in X\) and \([K(T)]\) by \(y \in X_{F(T)}\). The projection \(j \) is decomposed into the composition \(X_{F(T)} \xrightarrow{r} X \times A^1 \rightarrow X \) and the closure of the point \(r(y) \) in \(X \times A^1 \) equals \(x \times A^1 \). Since \(u(T) \in K[T] = F[x \times A^1] \) is a regular functor on \(x \times A^1 \), the specification map sends the element \(u(T)y \) at first by the multiplication on \(\pi = T-t \) in \((u(T), T-t)y \) and then by \(\vartheta \) to the element \(u(t)x \).

4. The construction of the homomorphism \(q : K_1(D) \rightarrow H_0(\mathbb{X}(D), K_1) \)

In this section we show how to extend the map \(q \) constructed in Section 3 from the "dense" subset \(S(D) \) to the whole group \(D^* \). This extension modulo the commutant appears to be the inverse map to \(p = p_1 \).
We begin with the following abstract situation. Let G be any group; a subset $S \subset G$ is called dense in G if for any elements $g_1, g_2, \ldots, g_n \in G$ the intersection $\bigcap Sg_i$ is not empty.

Lemma 5. Let S be a dense subset in group G such that $S = S^{-1}$ and $q: S \to B$ be a map to abelian group B. Suppose that

1. $q(g^{-1}) = -q(g)$ for any $g \in G$.

2. $q(g_1g_2) = q(g_1) + q(g_2)$ for all $g_1, g_2 \in S$ such that $g_1g_2 \in S$.

Then there exists the unique homomorphism $q': G \to B$ extending the map q.

Proof. Let $g \in G$; since $Sg \cap S1 \neq \emptyset$, we have: $sg = t \in S$ for some $s \in S; g = s^{-1}t$. If q' extends q then $q'(g) = -q(s) + q(t)$ which proves the uniqueness.

Now we prove the existence of the extension. Let $g \in G$; as before we find $s, t \in S$ such that $g = s^{-1}t$. We define q' by the formula $q'(g) = -q(s) + q(t)$. To prove that q' is well defined, take $g = s_1^{-1}t_1$ where $s_1, t_1 \in S$. Choose $s_2 \in Ss \cap Ss_1 \cap Sg^{-1} \cap S1$ then $g = s_2^{-1}t_2, t_2 \in S$ and $s_2s_1^{-1} = t_2t_1^{-1} \in S$, $s_2s_1^{-1} = t_2t_1^{-1} \in S$. Therefore

$$-q(s) + q(s_2) = q(s_2s_1^{-1}) = q(t_2t_1^{-1}) = q(t_2) - q(t_1),$$

$$-q(s_1) + q(s_2) = q(s_2s_1^{-1}) = q(t_2t_1^{-1}) = q(t_2) - q(t_1),$$

hence $-q(s) + q(t) = -q(s_1) + q(t_1)$ which proves that q' is well defined.

If $g \in S$ and $g = s^{-1}t$ for $s, t \in S$, then $q'(g) = -q(s) + q(t) = q(s^{-1}t) = q(g)$, i.e. q' is the extension of q.

Finally we have to show that $q'(gh) = q'(g) + q'(h)$ for any $g, h \in G$. Suppose at first that $g \in S$. Choose $s \in Sg \cap Sh^{-1} \cap S1$ then
\[h = s^{-1}t, t \in S \text{ and } gs^{-1} \in S. \text{ We have: } q'(g) + q'(h) = q(g) - q(s) + q(t) = q(gs^{-1}) + q(t) = q'(gh) \text{ since } gh = (sg^{-1})^{-1}t. \text{ Now consider the general case. Choose } t \in Sg \cap Sh^{-1} \cap S1 \text{ i.e., } s^{-1}t = g, s \in S \text{ and } t \in S. \text{ Using the first case we have: } q'(g) + q'(h) = -q(s) + q(t) + q'(h) = -q(s) + q'(th) = -q(s) + q(th) = q'(gh) \text{ since } gh = s^{-1}th. \]

Remark. It follows from the proof that \(G \) is generated by any dense subset.

Let \(D \) be a central skewfield of dimension \(n^2 \) over a field \(F, G = D^*, S = S(D) \subset G. \)

Lemma 6. The set \(S \) satisfies the conditions of Lemma 5, i.e. \(S^{-1} = S \) and \(S \) is dense in \(G \).

Proof. Since \(F[u^{-1}] = F[u], S^{-1} = S. \) If \(F \) is a finite field, the skewfield \(D \) is trivial [6] and therefore \(S = G \) is dense in \(G \).

Suppose now that \(F \) is an infinite field. Note that the set \(S \) is open in Zariski topology of affine space \(D = A \dim D. \) Indeed, \(u \in S \) if and only if the elements \(1, u, u^2, \ldots, u^{n-1} \in D \) are linearly independent over \(F \) if the rank of the matrix of coefficients of these elements in some basis of \(D \) is lesser than \(n \), i.e. the set \(D-S \) is closed in \(D \) and \(S \) is open. Therefore, for any \(g_1, g_2, \ldots, g_n \) in \(G \) the sets \(Sg_i \) are open and nonempty and since the field \(F \) is infinite, the intersection of these sets is not empty, i.e. \(S \) is dense in \(G \).

Now consider the abelian group \(B = H_0(X(D), K_1) \) and the map \(q:S \to B \) defined in Section 3. We prove that \(q \) satisfies the conditions of Lemma 5. Let \(u \in S, L = F[u] \); since \(F[u^{-1}] = L, q(u^{-1}) = (u^{-1})(L) = -q(L) = -q(u). \)

Finally we have to show that \(q(uv) = q(u) + q(v) \) for \(u, v \in S \) such that \(uv \in S \). Denote the polynomial \(vT + 1 - T \) by \(v(T). \) Since \(v(1) = v \in S(D), \) it is clear that \(uv(T) \in S\left(D_{F(T)}\right). \) Consider the element \(w = q(u) + q(v(T)) - q(uv(T)) \in H_0\left(X_{F(T)}, K_1\right). \) By Lemma 4 \(p(w) = uv(T)(uv(T))^{-1} = 1 \in K_1(D(T)). \)
Lemma 7. Let \(u \in \ker\left(H_0\left(X_{F(T)}, K_1 \right) \rightarrow P \rightarrow K_1D_{F(T)} \right) \). Then the image of the specialization \(s_\pi(u) \in H_0(X, K_1) \) in the rational point \(T = t \in F \) does not depend on the choice of \(t \) and \(\pi \).

Proof. Let \(L/F \) be any splitting field of \(D \). From the commutative diagram

\[
\begin{array}{ccc}
H_0\left(X_{F(T)}, K_1 \right) & \xrightarrow{P} & K_1D_{F(T)} \\
\downarrow i & & \downarrow \\
H_0\left(X_{L(T)}, K_1 \right) & \rightarrow & K_1D_{L(T)}
\end{array}
\]

and Lemma 3 we get that \(u \in \ker i \). The exact sequence of complexes

\[
0 \rightarrow \bigcup_{y \in A^1} \bigcup_{x \in X_{F(y)}^{*^{-1}}} K_s F(x) \rightarrow \bigcup_{x \in (X \times A^1)^*} K_s F(x) \rightarrow \bigcup_{x \in X_{F(T)}^{*}} K_s F(x) \rightarrow 0
\]

and isomorphism \(H_1(X \times A^1, K_2) = H_0(X, K_1) \) [8] give us the commutative diagram with the exact top row

\[
\begin{array}{ccc}
H_0(X, K_1) & \xrightarrow{k} & H_0\left(X_{F(T)}, K_1 \right) \\
\downarrow i & & \downarrow i \\
& \bigcup_{y \in A^1} H_0\left(X_{F(y)}, K_0 \right) & & \bigcup_{y \in A^1} H_0\left(X_{L(y)}, K_0 \right)
\end{array}
\]

The homomorphism \(j \) is injective by the theorem of Panin [5]. Therefore \(u \in \text{im}(k) \) and we can apply the Corollary to Lemma 1.

By Lemma 7 and Propositions 2 and 3 we have:

\[
q(u) + q(v) - q(uv) = s_{T-1}(w) = s_T(w) = q(u) - q(u) = 0
\]
So we can apply Lemma 5 to construct the extension of q:

$$q' : D^* \to H_0(X(D), K_1)$$

which clearly factors through the homomorphism

$$K_1(D) \to H_0(X(D), K_1)$$

that we'll denote by q.

Since the set $S(D)$ generates D^*, the composition poq is identified by Lemma 4. In the rest of this section we prove that q commutes with the specialization.

Lemma 8. For any $t \in F$ the group $D_{F(T)^*}$ is generated by the element $T - t$ and set S_t.

Proof. It is clear that $D_{F(T)^*}$ is generated by $T - t$ and the set of polynomials $u(T) \in D[T]$ such that $u(t) \neq 0$. Since $S(D)$ is a dense subset in D^*, we can find $v \in S(D)$ such that $u(t)v \in S(D)$. Then $v, u(T)v \in S_t$ and $u(T) = (u(T)v)v^{-1}$.

Proposition 4. For any $t \in F$ the diagram

$$
\begin{array}{ccc}
K_1D_{F(T)} & \xrightarrow{s_{T-t}} & K_1D \\
\downarrow q_T & & \downarrow q \\
H_0\left(X_{F(T)}, K_1\right) & \xrightarrow{s_{T-t}} & H_0(X, K_1)
\end{array}
$$

is commutative.

Proof. By Lemma 8 the group $D_{F(T)^*}$ is generated by $T - t$ and the set S_t. The commutativity for the elements of the set S_t was proved in Proposition 2. Instead of element $T - t$ it is sufficient to consider $(T - t)u$, where u is any element in $S(D)$. Let $L = F[u]$; then $F(T) [T - t]u] = L(T)$ and
\[(s_{T^{-1}} \circ g_T)((T-t)u)) = S_{T^{-1}}(((T-t)u[L(T)]) = \partial(((T-t)u,T-t)[L(T)])
= \partial([-u,T-t][L(T)]) = (-u)[L],\]
\[(g \circ s_{T^{-1}})((T-t)u) = g(\partial(((T-t)u,T-t))) = g(-u) = (-u)[L].\]

5. Proof of the Theorem

We have only to show that the composition \(q \circ p \) is identity. Let \(x \in X \), and \(u \in F(x)^* \). Consider the point \(\overline{x} \in X_{F(T)} \) over \(x \) and generic point of \(\text{Spec}F(T) \) and an element \(\overline{u} = uT + 1 - T \in F(T)(\overline{x}) = F(x)(T) \). Denote by \(w \) the element \(q(p(\overline{ux})) - \overline{ux} \in H_0(X_{F(T)}, K_1) \). Since \(p(w) = 0 \), Lemma 7 all the specializations of \(w \) in rational points coincide; in particular \(s_{T^{-1}}(w) = s_T(w) \). By Propositions 1 and 4 the homomorphisms \(p \) and \(q \) commute with the specialization and we have:
\[s_{T^{-1}}(w) = q(p(s_{T^{-1}}(\overline{ux}))) - s_{T^{-1}}(\overline{ux}) = q(p(\overline{ux})) - \overline{ux} \text{ since } s_{T^{-1}}(\overline{ux}) = \overline{ux} \]
and \(s_T(w) = q(p(s_T(\overline{ux}))) - s_T(\overline{ux}) = 0 \text{ since } s_T(\overline{ux}) = 0 \). Therefore,
\[q(p(\overline{ux})) = \overline{ux}, \text{i.e. } q \circ p = id. \]

So we have proved the Theorem in the case when \(D \) is a skewfield. Now let \(A \) be any central simple \(F \)-algebra, \(A = M_m(D) \) where \(D \) is a skewfield. Using the results of [5] one can find a closed subvariety \(Z \subset X(A) \) such that \(Z \cong X(D) \) and a vector bundle \(X(A) - Z \rightarrow X(A') \) where \(A' = M_{m-1}(D) \). Therefore, \(H_0(X(A)-Z,K_1) = 0 \) and the direct image
\[H_0(X(D),K_1) = H_0(Z,K_1) \rightarrow H_0(X(A),K_1) \]
is a surjective map. The Theorem follows from the commutative diagram.
The Group of K_1-Zero-Cycles on Severi-Brauer Varieties

\[H_0(X(D), K_1) \rightarrow K_1(D) \]
\[\downarrow_{i*} \quad \downarrow \]
\[H_0(X(A), K_1) \rightarrow K_1(A). \]

References

Received November 26, 1991