1. Determine all conjugacy classes in S_n for $n \leq 4$.

2. Determine all subgroups in A_4. Show that A_4 has no subgroup of order 6.

3. (a) Prove that S_n is generated by $(1, 2), (1, 3), \ldots (1, n)$.
 (b) Prove that S_n is generated by two cycles $(1, 2)$ and $(1, 2, \ldots, n)$.

4. Show that A_n ($n \geq 4$) and S_n ($n \geq 3$) have trivial centers.

5. (a) Show that the centralizer of A_n in S_n (the subgroup in S_n consisting of all elements, which commute with all elements in A_n) is trivial, if $n \geq 4$.
 (b) Let $g \in S_n$ be an odd transformation. Show that the map $f : A_n \rightarrow A_n$, given by $f(x) = gxg^{-1}$, is an automorphism. Prove that f is not inner automorphism if $n \geq 3$.

6. Prove that every automorphism of S_3 is inner and $Aut(S_3)$ is isomorphic to S_3.

7. Describe all Sylow subgroups in S_5.

8. Show that every subgroup in S_n of index n is isomorphic to S_{n-1}. (Hint: For a subgroup $H \subset S_n$ of index n consider the homomorphism $S_n \rightarrow S_X$, where $X = S_n/H$, induced by the action of S_n on X by left translations.)

9. (a) Show that for $n \neq 4$, any proper subgroup in A_n has index $\geq n$. (Hint: See the hint to problem 8.)
 (b) Prove that there are no injective homomorphisms $S_n \rightarrow A_{n+1}$ for $n \geq 2$.

10. (a) Show that for any $n \geq 1$ there is an injective homomorphism $S_n \rightarrow A_{n+2}$.
 (b) Prove that any finite group is isomorphic to a subgroup of a finite simple group.