1. Let $\sigma = (123 \cdots n) \in S_n$. Show that the conjugacy class of σ has $(n - 1)!$ elements. Show that the centralizer of σ is the cyclic subgroup generated by σ.

2. Prove the following Useful Counting Result. Let H be a subgroup of a finite group G. Suppose that $|G|$ does not divide $[G : H]$!. Then G contains a proper normal subgroup N such that N is a subgroup of H. In particular, G is not simple.

3. Prove that all groups of order $2p^n$ and $4p^n$ (p a prime) are not simple.

4. a) Let $H \subseteq G$ be a subgroup. Prove that if H is contained in the center of G and the factor group G/H is cyclic, then G is abelian.
 (b) Prove that any group of order p^2 (p a prime) is abelian.

5. Let G be a nonabelian group of order p^3 (p prime). Prove that the center $Z(G)$ of G coincides with the commutator subgroup $[G, G]$.

6. Let G be a semidirect product of a cyclic normal subgroup N of order n and an abelian group K. Show that if $|K|$ is relatively prime to $\varphi(n)$ (φ is the Euler function), then G is abelian.

7. Determine center of the dihedral group D_n.

8. Find all normal subgroups of D_n.

9. Show that the exact sequence

 $$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$

 does not split.

10. For every two nonzero integers n and m construct an exact sequence

 $$0 \to \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/nm\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \to 0.$$

For which n and m does the sequence split?