Homework 3 (Due: Fr, 2/3)

Problem 1:

a) Let \(f : \mathbb{D} \to \mathbb{C} \) be a continuous map, and \(\gamma(s) := f(e^{2\pi is}) \) for \(s \in [0, 1] \).
Show that if \(\gamma(s) \neq 0 \) for \(s \in [0, 1] \) and \(\text{ind}_{\mathbb{D}}(0) \neq 0 \), then \(f \) has a zero in \(\mathbb{D} \), i.e., there exists \(z_0 \in \mathbb{D} \) such that \(f(z_0) = 0 \).

b) Let \(f : \mathbb{D} \to \mathbb{C} \) be a continuous map such that
\[
\frac{f(z)}{z} \in \mathbb{C} \setminus (-\infty, 0] \quad \text{for all} \ z \in \partial \mathbb{D}.
\]
Show that \(f \) has a zero in \(\mathbb{D} \).

c) Use b) to prove the following 2-dimensional version of Brouwer’s Fixed-Point Theorem: if \(g : \mathbb{D} \to \mathbb{D} \) is a continuous map, then \(g \) has a fixed point, i.e., there exists \(z_0 \in \mathbb{D} \) such that \(g(z_0) = z_0 \).

Problem 2:

a) Let \(f : \overline{\mathbb{D}} \to \mathbb{C} \) be a continuous map, and
\[
A_k = \{ e^{iu} : \pi(2k-1)/4 \leq u \leq \pi(2k+1)/4 \} \subseteq \partial \mathbb{D}
\]
for \(k \in \{0, 1, 2, 3\} \). Suppose that \(\text{Re}(e^{ik}f(z)) > 0 \) whenever \(z \in A_k, k \in \{0, 1, 2, 3\} \). Show that \(f \) has a zero in \(\mathbb{D} \).

Hint: First find a simple function \(f \) that satisfies the hypotheses.

b) Consider the square \(Q := [-1, 1] \times [-1, 1] \subseteq \mathbb{R}^2 \cong \mathbb{C} \), and let \(\alpha : [-1, 1] \to Q \) and \(\beta : [-1, 1] \to Q \) be paths in \(Q \). Suppose that \(\alpha \) joins the left and the right side of \(Q \), and that \(\beta \) connects the bottom and top side of \(Q \) (i.e., \(\text{Re} \alpha(\pm 1) = \pm 1 \) and \(\text{Im} \beta(\pm 1) = \pm 1 \)). Show that \(\alpha \) and \(\beta \) have a point in common, i.e., \(\alpha^* \cap \beta^* \neq \emptyset \).

Problem 3: Let \(U \subseteq \mathbb{C} \) be an open set, and \(f : U \to \mathbb{C} \) a holomorphic function. For \((z, w) \in U \times U \subseteq \mathbb{C}^2 \) define
\[
g(z, w) = \begin{cases} \frac{f(z) - f(w)}{z - w}, & z \neq w, \\ f'(z), & z = w. \end{cases}
\]

a) Show \(g \) is continuous on \(U \times U \).

b) Show that for fixed \(w \in U \) the function \(z \mapsto g(z, w) \) is holomorphic on \(U \).

p.t.o.
Problem 4:

a) Let \(f : \partial D \to \mathbb{C}^* \) be a continuous map, and define \(\gamma(s) = f(e^{2\pi is}) \) for \(s \in [0, 1] \). Show that if \(f(-z) = -f(z) \) for all \(z \in \partial D \), then \(\text{ind}_\gamma(0) \neq 0 \).

b) Prove the 2-dimensional version of the Borsuk-Ulam Theorem: if \(g : \mathbb{S}^2 \to \mathbb{C} \) is a continuous map on the unit sphere \(\mathbb{S}^2 \subseteq \mathbb{R}^3 \), then there exists a pair of antipodal points on \(\mathbb{S}^2 \) with the same image under \(g \); in other words, there exists a point \(p \in \mathbb{S}^2 \) such that \(g(p) = g(-p) \).

Hint: It is convenient to use complex coordinates and make the identification \(\mathbb{R}^3 \cong \mathbb{C} \times \mathbb{R} \) and \(\mathbb{S}^2 = \{(z, h) \in \mathbb{C} \times \mathbb{R} : |z|^2 + h^2 = 1\} \). Argue by contradiction, and consider \(z \in \partial D \mapsto f(z) := g(z, 0) - g(-z, 0) \).