Problem 1: Let \(f : \mathbb{C} \to \mathbb{C} \) be a non-constant entire function.

(a) For \(r > 0 \) and \(w \in \mathbb{C} \) let \(n(r, w) \) be number of times the function \(f \) attains the value \(w \) in the disk \(B(0, r) \) counted with multiplicities (i.e., \(n(r, w) \) is the number of zeros of the map \(z \mapsto f(z) - w \) in \(B(0, r) \) counted with multiplicities). Show that for fixed \(r > 0 \) the function \(w \mapsto n(r, w) \) is a bounded lower semicontinuous function on \(\mathbb{C} \). (6 pts)

(b) Show that for fixed \(r > 0 \) the function \(w \mapsto n(r, w) \) is integrable on \(\mathbb{C} \) and
\[
\int_{B(0,r)} |f'(z)|^2 \, dA(z) = \int_{\mathbb{C}} n(r, w) \, dA(w).
\]
Hint: Express both integrals as path integrals! (6 pts)
Problem 2: Let $\Omega \subseteq \mathbb{C}$ be a region, and $h: \Omega \to \mathbb{R}$ be a harmonic function. Show that if h vanishes on a set of positive measure M in Ω, then $h \equiv 0$. Hint: One way to prove this is to consider the gradient ∇h of h. (12 pts)
Problem 3: If f is a non-constant holomorphic function on D, we denote by $L_f \in (0, \infty]$ the radius of the “largest” disk contained in the image $f(D)$; more precisely,

$$L_f := \sup \{ r > 0 : \text{there ex. } z_0 \in \mathbb{C} \text{ with } B(z_0, r) \subseteq f(D) \}.$$

The number

$$L := \inf \{ L_f : f \in H(D) \text{ and } f'(0) = 1 \}$$

is known as Landau’s constant. Its precise numerical value is not known. The purpose of this problem is to show that $L > 0$ by establishing an explicit positive lower bound for L.

(a) Let \mathcal{B} be the family of all functions $f \in H(D)$ satisfying $f(0) = 0$, $f'(0) = 1$, and

$$|f'(z)| \leq \frac{1}{1 - |z|^2} \text{ for } z \in D.$$

Show that $L = \inf \{ L_f : f \in \mathcal{B} \}$. Hint: First show that in the definition of L we may assume that the functions f are holomorphic in an open set containing \overline{D}. For such a function consider a point $z_0 \in D$, where $|f'(z)|(1 - |z|^2)$ attains a maximum on D, and precompose f by a suitable map that sends 0 to z_0. (4 pts)

(b) Let $g : D \to \mathbb{C}$ be a holomorphic function with $g(0) = w_0 \geq 0$ and $|g(z)| \leq 1$ for $z \in D$. Show that

$$\text{Re}(g(z)) \geq \frac{w_0 - |z|}{1 - w_0|z|}$$

for all $z \in D$ with $|z| \leq w_0$. (4 pts)

(c) Find an explicit number $c > 0$ such that $B(0, c) \subseteq f(D)$ for all $f \in \mathcal{B}$. (4 pts)

(d) Find an explicit positive lower bound for L. (1 pt)
Problem 4: The purpose of this problem is to give an alternative proof of Picard’s Theorem.

(a) By using Problem 3 show that every non-constant entire function f contains arbitrarily large disks in its image, i.e.,

$$L_f = \sup \{ r > 0 : \text{there ex. } z_0 \in \mathbb{C} \text{ with } B(z_0, r) \subseteq f(\mathbb{C}) \} = \infty.$$

(2 pts)

(b) Let f be an entire function omitting the values -1 and 1. Show that then there exists an entire function g such that $f = \cos(g)$. Which values will g omit? Hint: You can construct g explicitly by taking suitable roots and logarithms.

(6 pts)

(c) By using (a) and (b) show that every entire function f omitting -1 and 1 is constant.

(5 pts)