22. Characterization of simply connected regions

Lemma 22.1. \(\Omega \subset \mathbb{C} \) region.

a) If \(\Omega \) is homeomorphic to \(\mathbb{D} \), then

b) If \(\partial \Omega \) is connected, then \(\hat{\mathbb{C}} \setminus \Omega \) is connected.

Proof. a) Why \(\Omega \approx \mathbb{C} \). Then \(\Omega \) is simply connected (every loop is null-homotopic), and so by the Riemann Mapping Theorem, there exists a conformal map \(f : \mathbb{D} \to \Omega \).

Claim \(w \in \overline{\Omega} \) iff there exists a seq. \(\{z_n\} \) in \(\mathbb{D} \) with \(|z_n| \to 1 \) s.t.

\[y(z_n) \to w, \]

\[\Rightarrow \text{if } w \in \overline{\Omega} \text{ then } w \in \overline{\Omega}; \]

so ex. \(\{z_n\} \) in \(\mathbb{D} \) s.t.

\[y(z_n) \to w \text{ why } z_n \to a \in \overline{\mathbb{D}}. \]

WTS \(a \in \overline{\mathbb{D}} \).

Otherwise, \(a \in \mathbb{D} \). Then \(y(a) = w, w \in \Omega \), and \(w \notin \overline{\Omega} \). Contradiction!

\[\Rightarrow \text{if } w \in \overline{\Omega} \text{ then ex. } \{z_n\} \text{ in } \mathbb{D} \text{ with } |z_n| \to 1 \text{ and } y(z_n) \to w \text{ then } w \in \overline{\Omega}. \]

WTS \(w \in \overline{\Omega} \).

Otherwise, \(w \in \Omega \); then ex. \(a \in \mathbb{D} \) s.t.

\[y(a) = w. \text{ Then } z_n = y^{-1}(w), \text{ } z_n \to y^{-1}(w) = a \]
3c) $f = f$ whenever $f \in H(\Omega)$ and α, β are piecewise smooth paths in Ω with the same endpoints.

1) Every holomorphic function on Ω has a primitive.

2) For every harmonic function u on Ω, there exists $f \in H(\Omega)$ s.t. $u = \text{Re } f$.

3) Every harmonic function on Ω has a harmonic conjugate.

4) Every zero-free holomorphic function on Ω has a holomorphic logarithm.

5) Every zero-free holomorphic function on Ω has a holomorphic square root.

6) $\Omega = \mathbb{C}$ or Ω is conformally equivalent to \mathbb{D}.

7) Ω is homeomorphic to \mathbb{D}.

8) $\partial \Omega$ is connected (as a subset of \mathbb{C}).

9) $\mathbb{C} \setminus \Omega$ is connected.

10) For all $f \in H(\Omega)$ there exists a sequence $\{P_n\}$ of polynomials s.t. $P_n \to f$ locally uniformly on Ω.

Proof: We'll prove:

$\textbf{a \leftrightarrow b}$: By definition.

$\textbf{b \rightarrow c}$: Follows from Cor. 14.13.

$\textbf{c \rightarrow d}$: Cauchy's integral theorem.
2. **Contradiction!**

Let \(A_n = \{ z \in D : \left| 1 - \frac{1}{n} \right| < |z| < 1 \} \).

From the claim we deduce

\[
\partial \Omega = \bigcup_{n \in \mathbb{N}} \partial \varphi(A_n).
\]

Hence \(\partial \Omega \) is connected as an intersection of a descending seq. of comp. conn. sets.

(b) \(\text{Ext}(\Omega) = \text{set of exterior pts. of } \Omega \).

\[
\hat{\Omega} = \Omega \cup \partial \Omega \cup \text{Ext}(\Omega) \quad \text{(disj. union)}.
\]

Suppose \(\partial \Omega \) is conn. and \(\partial \Omega \subset U \cup V \), where \(U, V \subset \hat{\Omega} \) open.

\(U \cap V = \emptyset \).

WTS \(\partial \Omega \subset U \) or \(\partial \Omega \subset V \).

Since \(\partial \Omega \subset U \cup V \) is conn., \(\partial \Omega \subset U \) or \(\partial \Omega \subset V \), say \(\partial \Omega \subset U \).

\(U' = \Omega \cup \partial \Omega \) open, \(V' = V \setminus \overline{\Omega} \) open,

\[U \cap V' = \emptyset, \quad U \cap V' \subset \partial \Omega \cup \text{Ext}(\Omega) = \hat{\Omega} \]

So \(V' = \emptyset \); \(\forall \, V \subset \overline{\Omega} \) and \(\forall \, V \cap \text{Ext}(\Omega) = \emptyset \).

We conclude \(U \supset \partial \Omega \cup \text{Ext}(\Omega) = \hat{\Omega} \).

Thm 22.2. (Main Thm of Classical Complex Analysis).

Let \(\Omega \subset \mathbb{C} \) be a region. TFAE:

a) \(\Omega \) is simply conn.

b) every loop in \(\Omega \) is null-homotopic.

c) every loop in \(\Omega \) is null-homologous.

d) \(\int \gamma(z) \, dz = 0 \) whenever \(\gamma \in H(\Omega) \) and \(\gamma \) is a piecewise smooth loop in \(\Omega \).
\(d \to e: \int \frac{f(z)}{z} \, dz = \int f(z) \, d\bar{z} = 0. \)

e \to f: Proof as in Cor. 15.9.a:

\[F(z) = \int f(w) \, dw, \]

where a piecewise smooth path from base point \(a, z \). Then \(F \) is well-def.

and \(F' = f. \)

\(f \to g: \) Let \(u \) be harmonic on \(\Omega \), i.e., \(u \in C^2(\Omega), \)

\[\Delta u = u_{xx} + u_{yy} = 0. \]

Define \(g : = \frac{u_x + i u_y}{\alpha + i \beta} \).

\[a = \Re g, \quad b = \Im g, \quad \alpha = u_x = u_{xx} = -u_{yy} = b_y, \]

\[\beta = u_y = u_{yx} = -u_{xx} = -a_x. \]

So \(g \) sol. CR-eqs. Hence \(g \in H(\Omega) \).

By \(h \) how \(\Re h \) \(\in H(\Omega) \) s.l. \(h' = g \).

So \(h' = (\Re h)_x + i (\Im h)_x = (\Re h)_x - i (\Re h)_y = g = u_x - i u_y. \)

So \(\nabla u = \nabla (\Re (h) + c) \) s.e. \(c \in \mathbb{R} \) s.l.

\[u = \Re (h) + c = \Re (h + c), \quad f \in H(\Omega). \]

\(g \to h: \) \(u \) harmonic on \(\Omega \). By \(g \) \(\overline{u} \) on \(f \in H(\Omega) \)

s.l. \(u = \Re (f) \). Then \(u = \Im (f) \) is

harmonic on \(u \) on \(\Omega \).

\(h \to i: \) Let \(f \in H(\Omega), \) \(f(z) \not\equiv 0 \) for \(z \in \Omega \).

Define \(\alpha : = \log \| f \| = \frac{1}{2} \log \| f^2 \| \in C_0^\infty(\Omega). \)

\[\Delta u = 4 u_{zz} \quad = 2 \left(\frac{\Re f}{f} \right)_z + 2 \left(\frac{\Im f}{f} \right)_z \]

\[= 0 + 2 \left(\frac{\partial f}{\partial z} \right)_z = 0. \]
So u is harmonic. By hypothesis, u is a positive function in $H(\Omega)$.

Then e^u is also harmonic.

Let $f = e^{u/2}$, then $|f| = |u|/|u| = 1$,

so e^u/f is constant. (Max. principle).

Ex: $c = e^{iz}$, where $z \in \Omega$.

$e^u/f = e^{iz}$, so $f = e^{-z} = e^{-iz}$

$g = e^{iz}$, so $f = e^{iz}$.

$g^{-1} = e^{-iz}

\Rightarrow j: f \in H(\Omega)$, $f(z) \to 0$ as $z \to \infty$.

But there exists $g \in H(\Omega)$ such that

$f = e^{ug/2}$. Then $\Omega := e^{ug/2} \in H(\Omega)$ is a

holomorphic square root of f.

\rightarrow K: Suppose $\Omega = C$ and every zero-free
holomorphic function has a square root.

Then by the proof of the Riemann Mapping
Theorem, after proof of Thu. 19.51),

Ω is conformal equivalent to D.

\rightarrow l: If Ω is conformal equivalent to D, then Ω
is homeomorphic to D if $\Omega = C$, then Ω is
also homeomorphic to D (exercise!).

\rightarrow b: Obvious.

\rightarrow m: Loc. 22.1. a).

\rightarrow n: Loc. 22.1. b).

\rightarrow o: Cor. 21.7.

\rightarrow d: Let $f \in H(\Omega)$. Then by o there exists

a sequence of polynomials $\{P_n\}$ such that

$P_n \to f$ loc. uniformly on Ω. If f is a piecewise
smooth loop, then
23. The inhomogeneous Cauchy–Riemann equations

Rem. 23.1. $U \subset \mathbb{C}$ open.

The equation

$$\frac{\partial u}{\partial \overline{z}} = 0 \quad (\star)$$

for an unknown function u and a given function α on U is known as the inhomogeneous Cauchy–Riemann equation, or simply as the α-equation. (\alpha_bar).

It is a generalization of the CR-eqs.

(\text{homogeneous case with } u \equiv 0).

If $U \subset \mathbb{C}$ and $u \in C^1(U)$, then (\star) has a solution $f \in C^1(U)$, namely $f = T_u$ (Cauchy transform).

Indeed, by Lem. 20.3. $(T_u)^z = u$.

Thm. 23.2. Let $U \subset \mathbb{C}$, and $u \in C^1(U)$.

Then there exist $f \in C^1(U)$ s.t.

$$\frac{\partial f}{\partial \overline{z}} = u \quad (\star)$$

If $f \in C^1(U)$ is another solution of (\star),
7) Then there is $h \in H(U)$ s.t.
$$f = f + h.$$

Proof: Uniqueness clear.

Existence: Let $\{K_n\}$ be a comp. exhaustion of U as in Lem. 21.5. and $A \subseteq C \setminus U$ be a set that meets each bold comp. comp. of $C \setminus U$ (pick a point in each!). By Lem. 20.7, there exist $\phi_n \in C^\infty_c(U)$ s.t. $\phi_n|_{K_n} \equiv 1$.

Let $u_n := \phi_n \cdot u \in C^\infty_c(C)$ (extend by 0 outside U as usual). Then $g_n := T u_n \in C^1(U)$ and $\frac{g_{n+1} - g_n}{z} = (T u_n) \frac{1}{z} = u_n \mid_{K_n}, n \in \mathbb{N}.$

Note 1: $g + \sum_{n=1}^\infty (u_{n+1} - u_n) = \lim_{n \to \infty} u_n = u$ p-wise on U.

To solve (1), we would like to set
$$f := g + \sum_{n=1}^\infty (g_{n+1} - g_n),$$ but this series will not converge in general.

Wont: to correct series by holomorphic terms to make it convergent.

Note
$$\frac{g_{n+1} - g_n}{z} = u_{n+1} - u_n = (\phi_{n+1} - \phi_n) \cdot u \equiv 0 \text{ on } K_n.$$

So $g_{n+1} - g_n$ is holomorphic on int $(K_n) \supseteq K_{n-1}, K_0 = \emptyset$.

By construction of the exhaustion, A meets
By the improved upper lemma (Lem. 21.4), there exists a rational function R_n with no poles outside $\text{Aut} \log S_t$.

$$|g_{n+1} - g_n - R_n| < \frac{1}{2^n} \quad \text{on } K_{n-1}, n \in \mathbb{N}.$$

In particular, R_n is holomorphic on U.

Define

$$f = g_1 + \sum_{n=1}^{\infty} (g_{n+1} - g_n - R_n)$$

By the Weierstrass M-test, this series converges uniformly on each set K_N.

$$f = g_1 + \sum_{n=1}^{N-1} (g_{n+1} - g_n - R_n) + \sum_{n=N+1}^{\infty} (g_{n+1} - g_n - R_n)$$

$$|h_n| \leq \frac{1}{2^n} \quad \text{for } n = N+1, h_n \in H(\text{int}(K_N)).$$

Hence it converges locally uniform on U.

Moreover, we have

$$f = g_1 + \sum_{n=1}^{N-1} (g_{n+1} - g_n - R_n) + h_N \quad \text{on } \text{int}(K_N),$$

where $h_N \in H(\text{int}(K_N))$.

This shows that f is C^∞ smooth on U, and

$$D_{\mathbb{C}} f = \frac{\partial f}{\partial \zeta} = \frac{\partial g_{N+1}}{\partial \zeta} = g_{N+1} \cdot u = u \quad \text{on } \text{int}(K_N).$$

Hence $\frac{\partial f}{\partial \zeta} = u$ on U. \square
24. Partial fraction decompositions
of meromorphic functions
(Mittag-Leffler)

Thm. 24.1. Let $U \subseteq \mathbb{C}$ be open, $A \subseteq U$ be a discrete set (equiv. $A \cap U$ has no limit pts. in U).

Suppose for each $a \in A$ we specify a function of the form

$$P_a(z) = \sum_{n=1}^{\infty} \frac{A_n(a)}{(z-a)^n}, \quad n(a) \in \mathbb{N},$$

then there exists a meromorphic function $f \in H(U)$ on U that has no poles outside A, and that has a pole with principal part P_a for each $a \in A$.

Proof: Pick a compact exhaustion $K_n, n \in \mathbb{N}$, as in Lem. 21.5.

Define $A_n := K_n \setminus K_{n-1}, n \in \mathbb{N}$, where $K_0 := \emptyset$.

Then A_n is finite, and we have a disjoint union $A = \bigcup_{n \in \mathbb{N}} A_n$.

Define $g_n := \sum_{a \in A_n} P_a$.

Then g_n is meromorphic on U, and holomorphic on $\text{int} (K_{n-1})$ (there are poles in K_n).

By the improved approximation lemma (Lem. 21.4), there exists $R_n \in H(U)$ (see the proof of Thu. 23.2) s.t.

$$|g_n - R_n| < \frac{1}{2^n} \quad \text{on} \quad K_{n-2} \setminus \text{int} (K_{n-1}).$$
10. Define \(f = g_1 + \sum_{n=2}^{\infty} (g_n - R_n). \)

If \(N \in \mathbb{N} \) then on \(K_N \) we have
\[
f = g_1 + \sum_{n=2}^{N+1} (g_n - R_n) + \sum_{n=N+2}^{\infty} (g_n - R_n).
\]

Note that in the last series each term is holomorphic and bounded by \(1/2^n \) on \(K_N \cap K_{N-1} \).

Hence this series represents a holomorphic function \(H_N \) on \(\text{int} (K_N) \).

So \(f = g_1 + \sum_{n=2}^{N+1} (g_n - R_n) + H_N \) on \(\text{int} (K_N) \).

which shows that \(f \) is holomorphic on \(\text{int} (K_N) \) and that \(H_N \) has poles with principal part pa for \(a \in A \cap \text{int} (K_N) \).

Since \(\{U_n \cap \text{int} (K_N) \} = U \), the claim follows.

\[\text{Rev. 29.2.} \quad \text{If} \quad \sum_{n=1}^{\infty} h_n \quad \text{is a series of holomorphic functions} \quad h_n \quad \text{that converges locally uniformly on an open set} \quad U, \]
\[\text{then it represents a holomorphic function} \quad H \quad \text{and we can differentiate term-by-term to arbitrary order} \quad K \in \mathbb{N}: \]
\[H^{(k)}(z) = \sum_{n=1}^{\infty} h_n^{(k)} \quad \text{on} \quad U, \quad \text{with loc. unif. convergence.} \]
This follows from Weierstrass Thm. 18.4, applied to the partial sums of the series.

In the previous proof we represented f locally as a finite sum of meromorphic functions plus a locally uniformly convergent series of holomorphic functions.

It follows that we can differentiate term-by-term to arbitrary order.

Ex. 24.3. $f(z) = \frac{\pi^2}{\sin^2 \pi z}$.

Poles for $n \in \mathbb{Z}$:

$$\sin n = n - \frac{n^3}{6} + \cdots \quad n \to 0$$

$$\frac{\pi^2}{\sin^2 \pi z} = \frac{\pi^2}{\sin^2 \pi(z-n)} = \frac{\pi^2}{(\pi (z-n) - \frac{1}{6} \pi^3 (z-n)^3 + \cdots) + \cdots}$$

$$= \frac{1}{(z-n)^2} \left(1 - \frac{1}{3} \pi^2 (z-n)^2 + \cdots\right)$$

$$= \frac{1}{(z-n)^2} \left(1 + \frac{1}{3} \pi^2 (z-n)^2 + \cdots\right)$$

So, principal part $p_n(z) = \frac{1}{(z-n)^2}$.

$$f(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} \quad \text{conv. loc. unif. \quad \text{on } \mathbb{C} \setminus \mathbb{Z}}$$

$K = B(0, R)$; for $z \in B(0, R)$, $|n| \geq 2R$,

$$|z| \leq |n|/2 \Rightarrow$$

$$\left| \frac{1}{(z-n)^2} \right| \leq \left| \frac{1}{|n|^2} \right| \leq \frac{4}{|n|^2}$$

$$\sum_{|n| \geq 2R} \frac{1}{|n|^2} \leq 4 \sum_{|n| \geq 2R} \frac{1}{|n|^2} \leq 0 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$
\[f(z) = \sum_{|n| < 2R} \frac{1}{(z-n)^2} + \sum_{|n| \geq 2R} \frac{1}{(z-n)^2} \] is holomorphic on \(B(0, R) \). Hence \(\hat{f} \) is holomorphic on \(\mathbb{C} \). poles for \(n \in \mathbb{Z} \), principal part \(\frac{1}{(z-n)^2} \).

\[\hat{f}(z+1) = \hat{f}(z), \text{ indeed} \]

\[\hat{f}(z+1) = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{(z-(n-1))^2} \]

\[= \lim_{N \to \infty} \sum_{n=-N}^{N-1} \frac{1}{(z-n)^2} = \]

\[= \lim_{N \to \infty} \left[\sum_{n=-N}^{N-1} \frac{1}{(z-n)^2} + \frac{1}{(z+N+1)^2} \right] = \hat{f}(z). \]

\(S = \{ x+iy : 0 \leq x \leq 1, y \in \mathbb{R} \} \).

For \(x+iy \in S \), \(|y| = 2, \) \(x \in [0, 1] \):

\[\left| \frac{1}{(z-n)^2} \right| = \frac{1}{(n-x)^2 + y^2} \leq \frac{1}{y^2} \frac{1}{1 + \frac{(n-x)^2}{y^2}} \leq \frac{4}{y^2} \frac{1}{4 + (n-x)^2} = \frac{4}{y^2} \frac{1}{n^2 + 4 - 2nx} \leq \frac{4}{y^2} \frac{1}{(n^2 - 2n + 1)3} = \frac{4}{y^2} \frac{1}{3 + (n-1)^2} \]

\[|f(z)| \leq \sum_{n=-\infty}^{\infty} \frac{1}{|z-n|^2} \leq \frac{4}{y^2} \sum_{n=-\infty}^{\infty} \frac{1}{3 + (n-1)^2} \]

\[= \frac{c}{y^2} \]

So \(|\hat{f}(z+y)| \to 0 \) uniformly for \(x+iy \in S \), \(|z| \to \infty \).
Similarly, for \(z = x + iy \in \mathbb{S} \),
\[
|f(z)| = \left| \frac{\pi^2}{\sin^2 \pi z} \right| = \left| \frac{-4\pi^2}{e^{i\pi z} - e^{-i\pi z}} \right|^2 \\
= \frac{4\pi^2}{\left| e^{i\pi z} - e^{-i\pi z} \right|^2} \leq \frac{4\pi^2}{\left| e^{iy} - e^{-iy} \right|^2} \\
= \frac{\pi^2}{\sinh^2 y} \to 0 \text{ as } |y| \to \infty.
\]

Hence \(h(z) = f(z) - \tilde{f}(z) \) is an entire function.
It is 1-periodic, odd, holomorphic on \(\mathbb{S} \) and hence
on \(\mathbb{C} \). So \(h(z) \equiv 0 \) on \(\mathbb{C} \) by Liouville.
Since \(h(z) \to 0 \) as \(z \to \infty \), \(|z| \to \infty \),
it follows that \(h \equiv 0 \).

Conclusion:
\[
\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}, \quad z \in \mathbb{C} \setminus \mathbb{Z}.
\]

Second proof of Milne-Thompson's Theorem:

For each point \(a \in A \) we can pick \(r_a > 0 \)
so \(A \cap B(a, r_a) = \{a\} \).
Define \(B_a := B(a, r_a \sqrt{2}) \). Then \(B_a \cap B_b = \emptyset \)
for \(a \neq b \in A \).
Pick a function \(\varphi_a \in C^\infty_c(\mathbb{C}) \) s.t.
\(\varphi_a \equiv 1 \) near \(a \), \(\text{supp}(\varphi_a) \subseteq B_a \).

Let
\[
g := \sum_{a \in A} \varphi_a \cdot p_a. \quad \text{Then } g \in C^\infty(\mathbb{C} \setminus A),
\]
\[\frac{\partial g}{\partial z} = \sum_{a \in A} \frac{\partial \varphi_a}{\partial z} \cdot p_a \in C^\infty(\mathbb{C} \setminus A) \quad (\text{w.r.t. } \text{Let})
\]
\[
\frac{\partial^2 g}{\partial \overline{z}^2} \equiv 0 \quad \text{w.r.t. } \text{Let}
\]

Let \(h \in C^1(\mathbb{C}) \) be a solution of
14 \[\frac{2h}{h} = a \] (exists by Thm. 23.2).
Then \(f = g - h \) is holomorphic on \(U \setminus A \), because
\(f \in C(U \setminus A) \) and
\[\frac{\partial f}{\partial z} = \frac{\partial g}{\partial z} - \frac{\partial h}{\partial z} = 0. \]
Since \(\frac{\partial h}{\partial z} \equiv 1 \) near \(a \), \(a \equiv 0 \) near \(a \), and so \(h \) is holomorphic near \(a \).
Hence near \(a \):
\[f = g - h = p_n + \text{holomorphic function}. \]
So \(f \) has a pole at \(a \) with principal part \(p_n \).

Ex. 24.4. \(f(z) = \prod \cot \frac{\pi z}{n} = \prod \frac{\cos \frac{\pi z}{n}}{\sin \frac{\pi z}{n}}. \)

Poles for \(a \in \mathbb{Z} \):
\[\prod \cot \frac{\pi z}{n} = \prod \cot \varphi(z-n) = \prod \frac{\cos \frac{\pi (z-n)}{n}}{\sin \frac{\pi (z-n)}{n}} \]
\[= \prod \frac{1 - \frac{1}{2} \frac{n^2}{(z-n)^2} + \cdots}{\frac{n}{(z-n)} - \frac{1}{6} \frac{n^3}{(z-n)^3} + \cdots} \]
\[= \frac{1}{(z-n)} \left(1 + \cdots \right). \]

So, principal part \(q_n(z) = \frac{1}{z-n} \).
We'd like to consider
\[\sum_{n = -\infty}^{\infty} \frac{1}{z-n}, \text{ but this series diverges.} \]
(Cess. harmonic series!)
Need to subtract holomorphic continuous term: \(z \in \mathbb{C} \) fixed, \(n \to y, \) \(|y| > |z| \).
\[\int_{y}^{y+1} \frac{1}{z-n} = \frac{1}{y} - \frac{1}{z-n} = -\frac{1}{y} \left(1 + \frac{z}{n} + \frac{z^2}{n^2} + \cdots \right) \]
Subtract partial sum of this series.
Here first term is enough:
\[\hat{f}(z) = \frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \left(\frac{1}{z-n} + \frac{1}{n} \right). \] \hspace{1cm} (\ast)

Conv. loc. unif. on \(\mathbb{C} \setminus \mathbb{Z} \).
\(K = B(0, R) \); so \(z \in B(0, R) \), \(|n| \geq 2R \),

\[\left| \frac{1}{z-n} + \frac{1}{n} \right| = \frac{|z|}{|z-n| \cdot |n|} \leq \frac{2R}{|n|^2} , \]

and
\[\sum_{|n| \geq 2R} \left| \frac{1}{z-n} + \frac{1}{n} \right| \leq \frac{2R}{2} \sum_{|n| = 2R} \frac{1}{|n|^2} = \infty . \]

This shows that \(\hat{f} \) is meromorphic on \(\mathbb{C} \setminus \mathbb{Z} \),

and has poles \(\sum \frac{1}{n} \) with principal

poles \(\mathbb{Z} \) with principal

poles \(\mathbb{Z} \) with principal

poles \(\mathbb{Z} \).

We can differentiate (\ast) term-by-term:
\[\hat{f}'(z) = -\frac{1}{z^2} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{(z-n)^2} = -\sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{(z-n)^2} \]

\[= -\frac{\pi^2}{\sin^2 \pi z} \quad (\text{Ex. 24.3}). \]

\[f'(z) = \frac{d}{dz} \left(\pi \frac{\cos \pi z}{\sin \pi z} \right) = \pi \frac{\sin^2 \pi z - \cos^2 \pi z}{\sin^2 \pi z} \]

\[= -\frac{\pi^2}{\sin^2 \pi z} . \]

So \(h = f - \hat{f} \) is entire function with \(h' \equiv 0 \).

Hence \(h \equiv \text{const.} \).

Note that \(f \) and \(\hat{f} \) are odd functions;

Hence \(f \) is odd.

Since \(f(0) = 0 \),

\[\hat{f}(-z) = -\frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{z-n} + \frac{1}{n} = -\left(\frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{z-n} + \frac{1}{n} \right) = \hat{f}(z) , \]
16. Hence h is count. and odd, and so $h \equiv 0$.

Conclusion

\[\cot n z = \frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \left(\frac{1}{z - n} + \frac{1}{n} \right), \quad z \in \mathbb{C} \setminus \mathbb{Z}. \]

Alternatively,

\[\cot n z = \frac{1}{2} \left(\frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \left(\frac{1}{z - n} + \frac{1}{n} \right) \right) \]

\[+ \frac{1}{2} \left(\frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \left(\frac{1}{z + n} - \frac{1}{n} \right) \right) \]

\[= \frac{1}{z} + \frac{1}{2} \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{2z}{z^2 - n^2} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}. \]

25. Infinite products

Def. 25.1. \{an\} seq. in C.

Define

\[p_n = a_1 \cdots a_n = \prod_{k=1}^{n} a_k. \]

\(p_n \) is repr. by symbol \(\prod_{n=1}^{\infty} a_k \), called an **infinite product**.

\(p_n \) partial product.

We say that \(\prod_{n=1}^{\infty} a_n \) converges (properly) if there ex. \(n_0 \in \mathbb{N} \) s.t. the limit \(\lim_{n \to \infty} \prod_{k=n_0}^{n} a_k \) exists and is non-zero.

Then \(\lim_{n \to \infty} p_n = \lim_{n \to \infty} \prod_{k=1}^{n} a_k \) also exists.
and we denote this limit by
\[\lim_{n \to \infty} a_n. \]

Lemma 2.5.2. Let \(a_n \in C \) for \(n \in \mathbb{N} \).

a) If \(\prod_{n=1}^{\infty} a_n \) converges, then \(a_n = 0 \) for all but finitely many \(n \in \mathbb{N} \), and \(\prod_{n=1}^{\infty} a_n = 0 \) if there exists \(n \in \mathbb{N} \) with \(a_n = 0 \).

b) (Cauchy criterion)
\[\prod_{n=1}^{\infty} a_n \text{ converges if and only if for all } \epsilon > 0 \]
there exist \(N, N' \in \mathbb{N} \) s.t. for all \(m \geq n \geq N \)
we have
\[\left| \prod_{k=n}^{m} a_k - 1 \right| < \epsilon. \]

c) If \(\prod_{n=1}^{\infty} a_n \) converges, then \(\lim_{n \to \infty} a_n = 1. \)

Proof.

a) Clear from def.

b) \(n \to n' \): Wlog \(\prod_{n=1}^{\infty} a_n \neq 0. \) Then \(a_n \neq 0 \),
\[a_n = \prod_{k=1}^{n} a_k \to L \neq 0. \]
So \(|a_n| = |L|/2 \) for \(n \) large, and
\[\left| \prod_{k=n}^{m} a_k - 1 \right| = \left| \frac{a_m}{a_{m-1}} - 1 \right| \leq \frac{1}{|a_{m-1}|} |a_m - a_{m-1}| \leq \frac{2}{|L|} |a_m - a_{m-1}|. \]
The claim follows from Cauchy crit. for the seq. \(\{a_n\}. \)
By considering a "tail" of the inner product, we may assume that
\[|p_n - 1| \leq \frac{1}{2} \text{ and so } \frac{1}{2} \leq |p_n| \leq 2 \quad (*) \]
for all \(n \in \mathbb{N} \).

Then for \(m = n \geq 2 \),
\[|p_m - p_n| = |p_{n+1} - 1| \leq 2 |p_{n+1} - 1| \]

Hence, \(\{p_n\} \) is a Cauchy sequence and converges. Moreover,
\[\lim_{n \to \infty} p_n = 0 \quad \text{by (*)}. \]

(1) follows from (b): pick \(m = n \).

Often one writes an infinite product in the form
\[\prod_{n=1}^{\infty} (1 + c_n). \]

Necessary for convergence: \(c_n \to 0 \) as \(n \to \infty \), but not sufficient. (\(c_n \) have to go to 0 fast enough!)

Def. 25.3. Consider an infinite product of the form
\[\prod_{n=1}^{\infty} (1 + b_n), \quad b_n \in \mathbb{C}, \quad n \in \mathbb{N}. \]

We say that it converges absolutely if
\[\prod_{n=1}^{\infty} (1 + |b_n|) \text{ converges.} \]
9. \(\text{Ex. 25.4. a) } \prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) \text{ does not converge} \)

\[p_n = \prod_{k=1}^{n} \left(1 + \frac{1}{k}\right) = \prod_{k=1}^{n} \left(\frac{k+1}{k}\right) = \frac{2}{1} \cdot \frac{3}{2} \cdots \frac{n+1}{n} \]

"telescoping product" \(\rightarrow n+1 \rightarrow \infty \)

b) \(\prod_{n=1}^{\infty} \left(1 + \frac{(-1)^{n-1}}{n}\right) \) converges:

\[1 + \frac{(-1)^{n-1}}{n} = \frac{n + (-1)^{n-1}}{n} = \begin{cases} \frac{n+1}{n} & \text{odd} \\ \frac{n-1}{n} & \text{even} \end{cases} \]

\[p_n = \prod_{k=1}^{n} \left(1 + \frac{(-1)^{k-1}}{k}\right) = \frac{2}{1} \cdot \frac{4}{3} \cdot \frac{3}{4} \cdots \frac{n}{n-1} \]

\[= \begin{cases} 1 & \text{odd} \\ \frac{n-1}{n} & \text{even} \end{cases} \rightarrow 1 \text{ as } n \rightarrow \infty. \]

By a) the int. prod. does not conv. absolutely.

Prop. 25.5. \(\forall n \in \mathbb{N}, \) \(b_n \in \mathbb{R} \), \(n \in \mathbb{N} \),

a) If \(\prod_{n=1}^{\infty} (1 + b_n) \) converges absolutely, then it converges.

b) \(\prod_{n=1}^{\infty} (1 + b_n) \) converges absolutely if and only if \(\sum_{n=1}^{\infty} |b_n| \) converges.

c) Suppose \(\prod_{n=1}^{\infty} (1 + b_n) \) converges absolutely and let \(\phi: \mathbb{N} \rightarrow \mathbb{N} \) be any bijection. Then \(\prod_{n=1}^{\infty} (1 + b_{\phi(n)}) \) converges absolutely and

\[\prod_{n=1}^{\infty} (1 + b_{\phi(n)}) = \prod_{n=1}^{\infty} (1 + b_n) \]

(So in an absolutely conv. int. prod. we...
(20) can reorder the factors in any way without changing the convergence behavior or the limit.

Proof: \(p_{n,m} = \prod_{k=n}^{m} (1 + b_k) \), \(q_{n,m} = \prod_{k=n}^{m} (1 + |b_k|) \) for \(m \geq n \). Then

\[|p_{n,m} - 1| \leq |q_{n,m} - 1| \text{ for } m \geq n. \] (†)

Indeed,

\[|p_{n,m} - 1| = \left| \frac{(1 + b_n) \cdots (1 + b_m)}{1 + b_n \cdots + b_m} - 1 \right| = \left| \frac{b_n \cdots b_m}{1 + b_n \cdots + b_m} \right| = \sum \left| b_k \right| \cdots \sum \left| b_k \right| \left| b_k \right| + \cdots
\]

\[= (1 + |b_n|) \cdots (1 + |b_m|) - 1 = |q_{n,m} - 1|. \]

The claim follows from the Cauchy criterion for infinite products.

b) \(s_{n,m} = \sum_{k=n}^{m} |b_k| \). Note \(1 + x = e^x \) for \(x \geq 0 \).

Then \(|s_{n,m}| \leq |q_{n,m} - 1| \leq e - 1 \) for \(m \geq n \).

Indeed,

\[|s_{n,m}| = \sum_{k=n}^{m} |b_k| \leq (1 + |b_n|) \cdots (1 + |b_m|) - 1
\]
\[\leq e^{|b_n|} \cdots e^{|b_m|} - 1 = e - 1 \]

Using the Cauchy criterion for convex infinite series and products, the first inequality in (††)
(2) shows that \(\sum_{n=1}^{\infty} |b_n| \) converges, so \(\prod_{n=1}^{\infty} (1+b_n) \) converges. The second inequality shows the converse (note that \(e-1 \) is small for \(\varepsilon > 0 \) small).

c) Absolute convergence of \(\prod_{n=1}^{\infty} (1+b_k(n)) \)
follows from (b) and
\[
\sum_{n=1}^{\infty} |b_k(n)| = \sum_{n=1}^{\infty} |b_n| < \infty
\]

Let \(L := \prod_{n=1}^{\infty} (1+b_n) \), \(P_n := \prod_{k=1}^{n} (1+b_k) \)
\(\Phi_m := \prod_{k=1}^{m} (1+b_k) \).

Let \(\varepsilon > 0 \), \(\varepsilon \Log \varepsilon = 1 \).

We can pick \(N \in \mathbb{N} \) so, \(\Log \), that
\[
|P_n - L| < \varepsilon \quad \text{and} \quad \sum_{k=N+1}^{\infty} |b_k| < \varepsilon.
\]

Choose \(M \in \mathbb{N} \) so,
\[
\{ \Phi(1), \ldots, \Phi(M) \} \supseteq N_{3}\cup E.
\]

Then for \(m \geq M \)
\[
\{ \Phi(1), \ldots, \Phi(m) \} = \{ \Phi(1), \ldots, N_{3}\cup E \}
\]

Hence for \(m \geq N \)
\[
|P_m - L| \leq |P_m - P_N| + |P_N - L|,
\]
\[
\leq |P_N| \cdot \left| \prod_{k \in E} (1+b_k) - 1 \right| + \varepsilon,
\]
\[
\leq (L+1) \cdot \left(\prod_{k \in E} (1+|b_k|) - 1 \right) + \varepsilon,
\]
\[
\leq (L+1) \cdot (e^{\sum_{k=1}^{\infty} |b_k|} - 1) + \varepsilon.
\]

As \(\varepsilon \to 0 \), the above expression converges to
\[
(L+1)(e-1) + \varepsilon \leq C \varepsilon.
\]
22) Hence \(\lim_{n \to \infty} \prod_{n=1}^{\infty} (1 + b_n(z)) = \lim_{n \to \infty} f_n(z) = 1.\)

Thm. 25.6. (Infinite products of holomorphic functions)

Let \(U \subset \mathbb{C} \) open, \(f_n \in H(U) \) for \(n \in \mathbb{N} \).

Suppose that

\[
\sum_{n=1}^{\infty} |f_n(z) - 1| \text{ converges locally uniformly on } U.
\]

Then

\[
f(z) = \prod_{n=1}^{\infty} f_n(z)
\]

converges absolutely and locally uniformly on \(U \) (i.e., \(f_n \to f \) locally uniformly on \(U \) for the partial products).

In particular, \(f \) is holomorphic on \(U \).

Proof:

\[
\prod_{n=1}^{\infty} f_n(z) = \prod_{n=1}^{\infty} \left[1 + (f_n(z) - 1) \right]
\]

absolutely converges on each \(z \in U \) follows.

We'll establish compact convergence.

Let \(K \subset U \) be compact.

Then

\[
\sum_{n=1}^{\infty} |f_n(z) - 1| \text{ converges uniformly on } K.
\]

Then there exists \(C_0 \geq 0 \) s.t.

\[
\sum_{n=1}^{\infty} \sum_{k=1}^{n} |f_k(z) - 1| \leq C_1 = L(z) \leq C_1
\]

for \(z \in K \).
23. Hence for \(n \in \mathbb{N}, z \in \mathbb{K}, \)

\[
|p_n(z)| \leq |1 + |p_n(z)| - 1|
\]

\[
= |1 + \prod_{k=1}^{n} (1 + |f_k(z)| - 1) - 1|
\]

\[
\leq 1 + \prod_{k=1}^{n} (1 + |f_k(z)| - 1) - 1 \quad \text{(see Proposition 26.5)}
\]

\[
\leq \exp \left(\sum_{k=1}^{n} |f_k(z)| - 1 \right) \quad \text{(see Proposition 26.5)}
\]

\[
\leq C_1 = C_2
\]

So, the functions \(p_n \) are unit-bounded on \(\mathbb{K} \).

Let \(\varepsilon > 0 \). be arb. \(\{w_n\}_{n=1}^{\infty} \) \(\varepsilon \leq 1 \).

Since \(\sum_{n=1}^{\infty} |f_n(z)| - 1 \) conv. unif. on \(\mathbb{K} \),

there ex. \(N \in \mathbb{N} \) s.t. \(\sum_{n=N}^{\infty} |f_n(z)| - 1 \leq \varepsilon \)

for all \(z \in \mathbb{K} \).

Then for \(m \geq n \geq N, z \in \mathbb{K}, \)

\[
|p_m(z) - p_n(z)| = |p_n(z)(1 + \prod_{k=n+1}^{m} (1 + |f_k(z)| - 1) - 1)|
\]

\[
\leq C_2 \left[\exp \left(\sum_{k=n+1}^{m} |f_k(z)| - 1 \right) - 1 \right]
\]

\[
\leq C_2 (e - 1) \leq 3C_2 \varepsilon.
\]

The unif. conv. of \(p_n \to f \) on \(\mathbb{K} \) follows.

Since \(p_n \in H(U) \), we have \(f \in H(U) \).

Cor. 25.7. Assume in **Thm. 26.6.**, in addition that no sector \(S \) vanishes identically on any comp. of \(U \).
24. a) Then \(f \) does not vanish identically on any compact \(\overline{U} \), and so
\[
Z(f) := \{ a \in U : f(a) = 0 \}
\]
consists of isolated pts.
a \(\in Z(f) \) if \(f_n(a) = 0 \) for some \(n \in \mathbb{N} \).
Moreover, if \(a \in Z(f) \), then
\[
f_n(a) = 0 \quad \text{for at least finitely many } n \in \mathbb{N},
\]
and the order of the zero \(a \) on \(f \) is the sum of the orders at \(a \) for the functions \(f_n \) with \(f_n(a) = 0 \).

b) We have
\[
\frac{f'(z)}{f(z)} = \sum_{n=1}^{\infty} \frac{f_n'(z)}{f_n(z)} \quad \text{for } z \in U \setminus Z(f),
\]
and the series converges locally uniformly on \(U \setminus Z(f) \).

Proof: a) For each point \(a \in U \) there exists some \(N \in \mathbb{N} \) which is an open neighborhood \(V \subseteq U \) such that
\[
\sum_{n=1}^{\infty} |f_n(z) - 1| < 1 \quad \text{for } z \in V.
\]
In particular, \(f_n(z) \equiv 0 \), and so
\[
g(z) := \prod_{n=N+1}^{\infty} f_n(z)
\]
is a holomorphic function on \(V \) with \(g(z) \equiv 0 \) for \(z \in V \).
Since
\[
f(z) = \prod_{n=1}^{\infty} f_n(z) = f_1(z) \cdots f_N(z) \cdot g(z)
\]
the claim follows.
25. b) By Weierstrass, \(p_n \to f \) \text{ loc. unif. on } U.
So for each \(z \in U \setminus Z(f) \)
\[
\frac{f_n(z)}{f(z)} = \lim_{n \to \infty} \frac{p_n(z)}{p_n(z)} = \lim_{n \to \infty} \left(\frac{f_1(z)}{f_1(z)} + \ldots + \frac{f_n(z)}{f_n(z)} \right)
\]
\[= \sum_{n=1}^{\infty} \frac{f_n(z)}{f_n(z)} \]
and we have ptw. conv. on \(U \).
For loc. unif. conv. we let \(a \in U \setminus Z(f) \),
and pick \(\epsilon > 0 \). \(\overline{B}(a, \epsilon) \subset U \).
Then \(\sum_{n=1}^{\infty} \left| f_n(z) - f(z) \right| \leq 2 \) \(\text{ conv. unif. on } \overline{B}(a,\epsilon) \),
and so \(\left| f_n(z) - f(z) \right| \leq \frac{\epsilon}{2} \) \(\forall z \in \overline{B}(a,\epsilon) \)
\(\forall n \).
Moreover, for some fixed \(C \), we have
\(\left| f_n(z) - f(z) \right| \leq C \left| f_n(z) - f(z) \right| \) \(\text{ on } \overline{B}(a,\epsilon/2) \).
Hence for \(N \) large enough,
\[\sum_{n=N}^{\infty} \left| \frac{f_n(z)}{f_n(z)} \right| \leq 2C \sum_{n=N}^{\infty} \left| f_n(z) - f(z) \right| \leq 2C \sum_{n=N}^{\infty} \left| f_n(z) - f(z) \right| \]
locally unif. conv. of \(\sum_{n=1}^{\infty} \frac{p_n(z)}{p_n(z)} \) on \(U \setminus Z(f) \).

Ex. 25.f. \(f(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) \).
\(f_n(z) = 1 - \frac{z^2}{n^2} \), \(\left| f_n(z) - f(z) \right| = \sum_{n=1}^{\infty} \frac{|z|^2}{n^2} \)
converges loc. unif. to \(f \) by Weierstrass M-test.
So \(f \) is an entire function by Thm. 26.6.
with first order zeros \(z_n \) \(\forall n \in \mathbb{N} \).
By Cor. 26.7.
\[
\frac{f'(z)}{f(z)} = \sum_{n=1}^{\infty} \frac{-2z/n^2}{1 - \frac{z^2}{n^2}} = \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} = \pi \cot \pi z - \frac{1}{z}, \text{ for } z \in \mathbb{C} \setminus \mathbb{Z}.
\]

Note that \(g(z) = \frac{\sin \pi z}{\pi z} \) also has first order zeros at \(\pm n \) in \(\mathbb{C} \setminus \mathbb{Z} \).

\begin{align*}
\lim_{z \to 0} \frac{\sin \pi z}{\pi z} &= \lim_{z \to 0} \left(1 - \frac{1}{6} \pi^2 z^2 + \ldots \right) = 1, \\
\lim_{z \to 0} \left(1 - \frac{1}{6} \pi^2 z^2 + \ldots \right) &= 1,
\end{align*}

\[f'(0) = \sum_{n=1}^{\infty} \left(1 - \frac{1}{n^2} \right) = 1.
\]

This implies that \(g/t = \pi \cos \pi z - \frac{1}{z} = \pi \cot \pi z - \frac{1}{z} \).

Hence, \(g' = \frac{df}{f} \).

Indeed, \((g/t)' = \frac{g't - f'g}{f^2} = \frac{g(1 - f'/f)}{f^2} = 0 \).

Since \(f(0) = g(0) = 1 \), it follows that \(f = g \).

Conclusion: \(\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) \) for \(z \in \mathbb{C} \).
26. Factorizations of holomorphic functions

26.1. "Multiplicative" approximation

Let $K \subseteq \mathbb{C}$ be a set, $A \subseteq \mathbb{C} \setminus K$, and $C^*(K) := \{ f \in C(K) : f(w) \neq 0 \text{ for } w \in K \}$.

We want to approximate function $f \in C^*(K)$ by functions of the form

$$g(w) = R(w) \cdot e^{S(w)} \quad (\ast)$$

where R, S are rational, and R has no zeros or poles outside $A \cup \text{Hol}_f$, S has no poles outside $A \cup \text{Hol}_f$.

So

$$R(w) = \frac{\prod_{k=1}^{n} (w-a_k)^{m_k}}{\prod_{l=1}^{m} (w-b_l)^{m_l}} \quad a_1, \ldots, a_n, b_1, \ldots, b_m \in A$$

is holomorphic on $\mathbb{C} \setminus A' \equiv K$, where $A' \subseteq A$ finite.

$M_A(K) \subseteq C^*(K)$ is the set of those functions A-subgroup of $C^*(K)$; $f, g \in M_A(K)$

$$\implies f \cdot g \in M_A(K), 1/f \in M_A(K).$$

Note

$$M_\emptyset(K) = \{ e^{P(w)} : P \text{ polynomial} \}.$$

$M_A(K) \subseteq C^*(K)$ is the set of functions that are uniformly approximable by functions in $M_A(K)$.

So

$A_A(K) = \overline{M_A(K)} = \overline{M_A(K)}$ (closure in $C^*(K)$ with topology induced by sup-norm).
Lemma 26.2. (Pushing zeros and poles)

Let K be a connected component of $C \setminus K$, $a \in V$. Suppose f is a rational function with no zeros and poles outside $V \cup \{w\}$. Then $f \in \mathcal{A}_{\text{aj}}(K)$, more specifically, for all $\varepsilon > 0$ there exist a rational function S with no poles outside $\{a, \infty\}$ s.t.

$$|f(w) - (w-a) e S(w)| < \varepsilon$$

for all $w \in K$.

If V is the unbounded connected component of $C \setminus K$, then actually $f \in \mathcal{A}_{\infty}(K)$, i.e., for all $\varepsilon > 0$ there exist a polynomial P s.t.

$$|f(w) - e P(w)| < \varepsilon$$

for all $w \in K$.

Proof:

$$f(w) = \frac{\prod_{k=1}^{N} (w - b_k)}{\prod_{l=1}^{M} (w - c_l)} b_1 \cdots b_N, c_1 \cdots c_M \in V.$$

So, it suffices to show that each factor lies in $\mathcal{A}_{\text{aj}}(K)$. Let $b \in V$ be such. Pick a path P joining a and b, and let $P(a) = a_0, a_1, \ldots, a_M = b$. Then $a_0, a_1, \ldots, a_M \in V$. Therefore, for each k,

$$f(w) = \frac{\prod_{k=1}^{N} (w - b_k)}{\prod_{l=1}^{M} (w - c_l)} b_1 \cdots b_N, c_1 \cdots c_M \in V.$$

So, it suffices to show that each factor lies in $\mathcal{A}_{\text{aj}}(K)$. Let $b \in V$ be such. Pick a path P joining a and b, and let $P(a) = a_0, a_1, \ldots, a_M = b$. Then $a_0, a_1, \ldots, a_M \in V$. Therefore, for each k,
\[|u_k - u_{k-1}| \leq r = \text{dist} (f^*, K). \]

We write
\[
(W-b) = \left(\frac{W-u_k}{W-u_{k-1}} \right) \cdots \left(\frac{W-u_1}{W-u_0} \right) (W-a). \tag{**}
\]

So, it suffices to show: **Claim** if \(u \in V \) and \(|u-v| < r \leq \text{dist} (f^*, K) \) then \(w \mapsto \frac{w-v}{w-u} \) is unit. approx. on \(K \) by functions of the form \(e^{S(u)} \), where \(S \) is rational and has no poles outside \(\{|0,0,0\} \).

\[\log (1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n \quad \text{converges loc. and unit. on } \mathbb{D}. \]

Main branch
\[
\frac{w-v}{w-u} = \frac{w-u + u-v}{w-u} = 1 + \frac{u-v}{w-u}
\]

\[|\frac{u-v}{w-u}| = \frac{|u-v|}{|w-u|} \leq \frac{|u-v|}{r} < 1 \quad \text{for } w \in K. \]

So \(\log \left(\frac{w-v}{w-u} \right) = \log (1 + \frac{u-v}{w-u}) \) is unit. approx. on \(K \) by polynomials in \(\frac{1}{w-u} \) and hence by polynomials in \(\frac{1}{w-a} \) (Ler. 21.3).

Hence
\[\frac{w-v}{w-u} \text{ is unit. approx. on } K \text{ by functions of the form } e^{S(u)} \text{, where } S \text{ is rational and has no poles outside } \{|0,0,0\}. \]

The first part of the statement follows.
Suppose V is the unbold coup of $C \setminus K$. Then we choose $a \in V$ so that $|a| > R = \sup \{|w| : \omega \in K\}$, and use this in (4).

As in the first part of the proof, we can approximate $\log\left(\frac{w-u_i}{w-u_{i+1}}\right)$ unit on K by polynomials in $\frac{1}{w-u_{i+1}}$, and hence by polynomials in w (push u_{i+1} to ∞). So $\frac{w-u_i}{w-u_{i+1}}$ can be approximated by functions of the form $e^{P(w)}$, P polynomial.

Note $$(w-a) = -a\left(1 - \frac{w}{a}\right), \quad \text{and} \quad \left|\frac{w}{a}\right| < \frac{R}{|a|} < 1.$$ So $$\log\left(1 - \frac{w}{a}\right)$$ is unit approx on K by polynomials in P; hence $(w-a)$ is unit approx on K by functions of the form e^{P}. \[\]"}

Lemma 26.3. (Multiplicative approximation lemma)

Let T open, $K \subseteq T$ coup, $f \in H(C)$, $A \subseteq C \setminus K$ that avoids each bold coup of $C \setminus K$. Assume $f(w) \neq 0$ for all $w \in K$.

Then $f \in A^+(K)$, i.e., for all $\varepsilon > 0$, there exists a function $s(w)$ such that

$$g(w) = R(w) \cdot e^{s(w)}$$

$$|f(w) - g(w)| < \varepsilon$$ for all $w \in K$. \[\]"
Have \(P, S \) are rational, \(P \) has no zeros and poles outside \(\mathcal{A}(\sigma) \). \(S \) has no poles outside \(\mathcal{A}(\sigma) \). If \(C \setminus K \) has no bold. comp., then for all \(e > 0 \) there ex. a polynomial \(P \ s.t. \ g(w) = e \) and \(|f(w) - g(w)| < e \) for all \(w \in K \).

Note: \(\forall y, \ e' = \frac{1}{2m} \leq \min \{|f(w)|: w \in K\} \geq 0 \). Then \(|g(w)| \geq \frac{1}{2} \) for \(w \in K \), and

\[
\left| \frac{f(w)}{g(w)} - 1 \right| \leq \frac{1}{|g(w)|} \left| f(w) - g(w) \right| \leq \frac{e}{m}, \quad e' = \frac{e}{2m},
\]

\(e' \leq e \).

Proof: \(\forall y, \ e = \min \{|f(w)|: w \in K\} \). By the Lm. 29.4. (Improved Approx. Lm.) there ex. a rational function with no poles outside \(\mathcal{A}(\sigma) \) s.t.

\[
|f(w) - P(w)| < \frac{e}{2} \leq m \text{ for all } w \in K.
\]

Then \(P(w) \approx f(w) \) for all \(w \in K \), and so \(P \) has no zeros outside \(C \setminus K \cup \{0\} \).

Hence \(R \) can be decomposed into rational functions

\[R = R_1 \cdots R_k. \]

So, if \(\mathcal{A} \) has \(k \) bold. comp., then ex. a comp. \(V \) at \(C \setminus K \) s.t. \(R_{\mathcal{A}} \) has no poles or zeros outside \(V \cup \{0\} \). There ex. an \(\in V \) \(k \)

So, \(\mathcal{A} \) bold. comp. \(V \) by
3) Functions of the form
\[(w-a)^n e^{Su(z)}\], where \(w \in \mathbb{Z}\), \(S\) rational with no poles outside \(\mathbb{D}\).

The first statement follows.

For the proof of the second statement, we use the second part of Lem. 26.2 to approximate each factor \(D_k\) by a function of the form \(e^z + \mathcal{P}\) polynomial.

Thm. 26.4. (Weierstrass)

Let \(U \subseteq \mathbb{C}\) be open, \(Z \subseteq U\) be a discrete set (equiv. \(Z \subseteq U\) has no limit pts. in \(U\)). Suppose \(w : Z \to N\) is a function.

Then there exists a holomorphic function \(f\) on \(U\) s.t. \(f\) has no zeroes outside \(Z\), and for each \(p \in Z\) \(f\) has a zero of order \(w(p)\).

(Proof) Pick a countable exhaustion \(K_n, n \in \mathbb{N}\) of \(U\) as in Lem. 21.5.

Define \(Z_n = K_n \setminus K_{n-1}\), \(n \in \mathbb{N}\), where \(K_0 = \emptyset\).

Then \(Z_n\) is finite, and we have a disjoint union \(Z = \bigcup_{n \in \mathbb{N}} Z_n\).

For each \(n \in \mathbb{N}\) define
\[g_n(z) = \prod_{a \in Z_n} (z-a)^{w(a)}\]

Then \(g_n\) is a polynomial with zeroes at \(a \in \mathbb{A}K\) of order \(w(a)\).
We can pick \(A \in \text{C}^{1\leq n} \) such that each bold coup. at \(C \setminus K_n \), \(n \in \mathbb{N} \). We'd like to define
\[
f = \prod_{n=1}^{\infty} g_n, \quad \text{but in general the inf.}
\]
product will not converge.

The function \(g_n \) is holomorphic on \(U \) and zero-free on \(\overline{K_n} \). Hence, by [Hull, approx. theor.] there exists a solution \(h_n \in H(U) \) with \(h_n(z) \neq 0 \) for all \(z \in U \) such that
\[
\left| \frac{g_n}{h_n} - 1 \right| < \frac{1}{2^n} \quad \text{on } K_{n-1}.
\]

Note that \(g_n \) and \(g_n/h_n \) have the same zeros of the same order.

Define \(f \) as
\[
f = \prod_{n=1}^{\infty} \frac{g_n}{h_n}.
\]
Then \(\sum_{n=1}^{\infty} \left| \frac{g_n}{h_n} - 1 \right| \) converges compactly (and hence loc. unif. on \(U \)) by the Weierstrass M-Test, because
\[
\left| \frac{g_n}{h_n} - 1 \right| < \frac{1}{2^n} \quad \text{on } K_n, \quad n \in \mathbb{N}, \ n \geq N+1.
\]

By Thm. 25.6, \(f \) is holomorphic on \(U \).

By Cor. 25.7, \(f \) has zeros precisely at the points \(a \in \mathbb{Z} \), and the order of the zero at \(a \in \mathbb{Z} \) is \(m(a) \). \(\Box \)
Cor. 26.5: \(U \subseteq \mathbb{C} \) region, \(f \) meromorphic on \(U \). Then there exist \(g, h \in H(U) \), \(h \neq 0 \)
\[b.1. \quad f = g/h \]

Proof: Let \(Z \subseteq \mathbb{C} \) be the set of poles of \(f \), and \(m(p) \) the order of the pole \(p \in Z \). Then \(Z \) has no limit points in \(U \). By Thm. 26.4, there exists \(h \in H(U) \) s.t. \(h(z) \rightarrow 0 \) as \(p \in U \setminus Z \), and so that \(h \) has a zero of order \(m(p) \) for \(p \in Z \). Then \(g := h/f \) is holomorphic on \(U \setminus Z \) and has removable singularities for \(p \in Z \). Hence \(g \) is holomorphic on \(U \), and
\[f = g/h. \quad \square \]

If \(U \subseteq \mathbb{C} \) is a region, then \(H(U) \) is an integral domain, and the previous cor. implies that the quotient field of \(H(U) \) is the set of holomorphic functions on \(U \).

26.6. Elementary factors

If \(U = \mathbb{C} \) in Thm. 26.4, then one can exhaust \(U \) by closed disks \(K_n \).

Then \(\mathbb{C} \setminus K_n \) has no boundary comp. and one can choose functions \(h_n \) as in the proof of Thm. 26.4. of the form \(a^n \cdot P_n(u) \), where \(P_n \) is a polynomial (cf. Lem. 26.3).

It is possible to do this explicitly based...
Let $n \in \mathbb{N}$, and denote

$$E_n(u) = (1-u) \exp \left(u + \frac{u^2}{2} + \cdots + \frac{u^n}{n} \right).$$

Then

$$|E_n(u) - 1| \leq |u|$$

for all $u \in \overline{D}$.

Proof:

$$-E_n'(u) = \exp \left(P_n(u) \right) \cdot \frac{P_n'(u)}{(1-u)}.$$

and so $-E_n'(u)$ has a zero of order $n+1$ at 0, and all its Taylor coeff. at 0 are non-negative.

Hence

$$1 - E_n(u) = -\int_{0}^{u} E_n'(z) \, dz$$

for $u \in \mathbb{C}$.

and we can interpolate this Taylor series term-by-term, it follows that

$$1 - E_n(u)$$

has a zero of order $n+1$ at 0, and the Taylor coeff. of this function at 0 are also non-neg.

Hence

$$Q(u) = \frac{1 - E_n(u)}{u^{n+1}}$$

is an analytic function with

$$Q(u) = \sum_{k=0}^{\infty} a_k u^k,$$

where $a_k \geq 0$ for $k \in \mathbb{N}$.

So for $u \in \overline{D}$,

$$|Q'(u)| \leq Q(1) = \frac{1 - E_n(1)}{1^{n+1}} = 1,$$

and the claim follows.
Prop. 26.7. Let \(\{Z_n\} \) be a sequence of complex numbers with \(Z_n \neq 0 \) for \(n \in \mathbb{N} \), and \(Z_n \to \infty \) as \(n \to \infty \).

If \(\{N_n\} \) is a sequence of numbers \(N_n \in \mathbb{N}_0 \) s.t.
\[
\sum_{n=1}^{\infty} \left(\frac{R}{|Z_n|} \right)^{N_n+1} < \infty \quad \text{for all } R > 0,
\]
then the infinite product
\[
f(z) = \prod_{n=1}^{\infty} E_{N_n} \left(\frac{z}{Z_n} \right)
\]
converges absolutely and loc. uni. on \(\mathbb{C} \).
Moreover, \(f \) is entire and has no zeros outside \(\mathbb{Z} := \{Z_n: n \in \mathbb{N}_0\} \).
For \(a \in \mathbb{Z} \) the function \(f \) has a zero at \(a \) whose order is equal to the number of times \(a \) occurs in \(\{Z_n\} \).
If \(N_n = n - 1 \), then (1) holds.

Proof: This follows immediately from Thm. 25.6. and Cor 25.7.
Note that \(E_{N_n}(z/Z_n) \) is an entire function with one zero of order \(1 \) at \(Z_n \) and no other zeros. Moreover, if \(R > 0 \) is fixed, then
\[
|Z_n| \geq R \quad \text{for large } n, \quad \text{say, for } n \geq n_0.
\]
Hence
\[
\sum_{n=n_0}^{\infty} \left| E_{N_n}(z/Z_n) - 1 \right| \leq \sum_{n=n_0}^{\infty} \left| \frac{z}{Z_n} \right|^{N_n+1}
\]
\[
\leq \sum_{n=n_0}^{\infty} \left(\frac{R}{|Z_n|} \right)^{N_n+1} < \infty \quad \text{for } z \in \overline{B}(0,R).
\]
Hence
\[
\sum_{n=1}^{\infty} \left| E_{N_n}(z/Z_n) - 1 \right| \text{ converges loc.}
\]
Thm. 26.8. (Weierstrass Factorization Theorem)
Let \(f \) be an entire function, \(f(z) \neq 0 \) at \(z \), each zero \(z_n \) of \(f \) each listed as often as its multiplicity. Then there exist numbers \(m \in \mathbb{N}_0, N \in \mathbb{N}_0 \), and an entire function \(h \) s.t.
\[
f(z) = e^{h(z)} z \prod_{n=1}^{\infty} E_{N_n}(z/z_n) \text{ for } z \in \mathbb{C}.
\]

Proof: Based on Prop. 26.7, we can find numbers \(m \in \mathbb{N}_0, N \in \mathbb{N}_0 \) for \(n \in \mathbb{N} \) s.t.
\[
g(z) = z \prod_{n=1}^{\infty} E_{N_n}(z/z_n) \text{ is an entire function with the same zeros as } f \text{ with the same multiplicities.}
\]
Then \(u(z) = f/g \) is an entire function with no zeros. Hence \(u \) has a holomorphic logarithm \(h \) in \(\mathbb{C} \), i.e., there exist \(h \in H(\mathbb{C}) \) s.t.
\[
u(z) = f/g = e^h. \] The claim follows.

Ex. 26.9. We want to find an entire function with zeros at \(n \in \mathbb{Z} \) of first order.
Let \(\{z_n\} \) be an enumeration of \(\mathbb{Z} \) \&\(h \), and \(N_n = 1 \) for all \(n \in \mathbb{N} \).
Then \(\sum_{n=1}^{\infty} R_n > 0 \)
\[
\sum_{n=1}^{\infty} \left(\frac{R}{|z_n|} \right)^2 = 2 \sum_{n=1}^{\infty} \frac{R^2}{n^2} < \infty.
\]
\[f(z) = z \cdot \prod_{n=1}^{\infty} \left(1 - \frac{z}{n} \right) e^{-z/n} \]

is an entire function with simple zeros at \(n \in \mathbb{Z} \). Note that the order of the factors in \((\star)\) is irrelevant, as the product converges absolutely. Hence

\[f(z) = z \cdot \prod_{n=1}^{\infty} \left(1 - \frac{z}{n} \right) e^{-z/n} \cdot \left(1 + \frac{z}{n} \right) e^{-z/n} \]

\[= z \cdot \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) = \frac{\sin \pi z}{\pi z} \quad \text{(cf. 25.8)}. \]

Ex. 26.10. Want to construct an entire function \(f \) with simple zeros at the points \(-n, n \in \mathbb{N}_0\).

Take \(a_n = -n \) and \(N_n = 1 \) in Prop. 26.7.

Then \(\sum_{n=1}^{\infty} \frac{R^2}{n^2} < \infty \) for all \(R > 0 \).

So,

\[f(z) = z \cdot \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n} \]

is an entire function with simple zeros at \(-n, n \in \mathbb{N}_0\).

Since the \(\Gamma \)-function has simple poles at those points, we expect a relation between \(1/f \) and \(\Gamma \).

0: \# f(1) = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) e^{-1/n} = \lim_{n \to \infty} \frac{1}{n} \prod_{k=1}^{n} \left(1 + \frac{1}{k} \right) e^{-1/n}
\[= \lim_{n \to \infty} (n+1) \cdot e^{-H_n}. \]

Taking logarithms we conclude that

\[
f_1 = -\log f(1) = \lim_{n \to \infty} H_n - \log(n+1)
\]

\[
= \lim_{n \to \infty} (H_n - \log n) + \log \frac{n}{n+1} \to 0
\]

\[
= \lim_{n \to \infty} (1 + \frac{1}{2} + \cdots + \frac{1}{n}) - \log n \quad \text{exists.}
\]

\[f = 0.5772 \ldots \] is called the Euler–Mascheroni constant. It is not known whether \(f \) is irrational or not.

So \(f(1) = e^{-f} \).

Let

\[g(z) = e^{f_z} \cdot f(z) = e^{f_z} \cdot z \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) \cdot e^{-z/n}. \]

Then \(g(1) = e^{f_1} \cdot e^{-f} = 1 \).

\(g \) is analytic with simple zeros at \(-n, n \in \mathbb{N}\).

For \(z \in \mathbb{C} \):

\[g(z) = e^{f_z} \cdot z \cdot \lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right) \cdot e^{-z/k}
\]

\[= e^{f_z} \cdot z \cdot \lim_{n \to \infty} \prod_{k=1}^{n} \left(\frac{z+k}{k}\right) \cdot e^{-z/H_n}
\]

\[= e^{f_z} \cdot \lim_{n \to \infty} z \frac{(z+1) \cdots (z+n)}{n!} \cdot e^{z \left(\log(1+H_n) - \frac{z}{n}\right)}
\]

\[= \lim_{n \to \infty} z \frac{(z+1) \cdots (z+n)}{n! \cdot n^z} \cdot e^{z \left(\log(1+H_n) - \frac{z}{n}\right)}
\]

Hence for \(z \in \mathbb{C} \), \(f \) is
\[g(z+1) = \lim_{n \to \infty} \frac{(z+1) \cdots (z+n)}{n! \cdot n^z} \]

\[= \frac{1}{z} \lim_{n \to \infty} \frac{z (z+1) \cdots (z+n)}{n! \cdot n^z} = \frac{1}{z} g(z) . \]

Let \(\tilde{g}(z) = 1/g(z) \).

Then i) \(\tilde{g} \) is meromorphic on \(\mathbb{C} \).

ii) \(\tilde{g}(1) = g(1) = 1 \).

iii) \(\tilde{g}(z+1) = \frac{1}{z} g(z+1) = \frac{1}{z} \tilde{g}(z) = z \tilde{g}(z) \).

iv) Let \(S = \{ z \in \mathbb{C} : y \in \mathbb{R}, \Re z = z \} \).

Then for \(z = x + iy \in S, 1 \leq x \leq 2, y \in \mathbb{R}, \)

\[|\tilde{g}(z)| = \lim_{n \to \infty} \left| \frac{n! \cdot n^z}{z \cdot (z+1) \cdots (z+n)} \right| \]

\[\leq \lim_{n \to \infty} \frac{n! \cdot n^x}{x \cdot (x+1) \cdots (x+n)} = \tilde{g}(x) \]

Note: \(|z| = |e^{(x+iy)}| = e^{x} \cdot |\Re z| = \Re z, \]

\[|z+k| = \Re (z+k) = x+k, \quad k = 0, \ldots, n. \]

Since \(g \) is zero-free on \([1,2]\), \(\tilde{g} = 1/g \) is odd on \([1,2]\).

Hence

\[\sup_{z \in S} |\tilde{g}(z)| \leq \sup_{x \in [1,2]} |\tilde{g}(x)| < \infty. \]

The properties i) iv) characterize the \(\Gamma \)-function unique (246 B1 HW 9, Prob. 3).

Hence \(\tilde{g} = \Gamma \).

Conclusion \(1/\Gamma \) is an entire function.

and

\[\frac{1}{\Gamma(z)} = e^{\frac{z}{1}} \cdot \frac{\prod_{n=1}^{\infty} (1 + \frac{z}{n})}{e^{-2}} \cdot e^{\frac{z}{n}} \]

\[= \lim_{n \to \infty} \frac{z \cdot (z+1) \cdots (z+n)}{n! \cdot n^z} . \]