Problem Set 3
Solutions

Mathematical Logic
Math 114L, Spring Quarter 2008

1. (a) We proceed by induction on \(n \) to show that given a set \(\Sigma \) consisting of \(n \) wffs there exists an independent equivalent subset \(\Sigma_0 \) of \(\Sigma \). If \(n = 0 \), then there is nothing to show, since \(\Sigma \) is then automatically independent. Suppose \(n > 0 \). If \(\Sigma \) is already independent, we are done. If not, let \(\alpha \in \Sigma \) with \(\Sigma' := \Sigma \setminus \{\alpha\} \models \alpha \). Then clearly \(\Sigma \) and \(\Sigma' \) are equivalent: if \(\Sigma' \models \beta \) then \(\Sigma \models \beta \) since \(\Sigma' \subseteq \Sigma \); and if \(\Sigma \models \beta \), and \(v \) is a truth assignment satisfying \(\Sigma' \), then \(\bar{v}(\alpha) = T \) since \(\Sigma' \models \alpha \), hence \(v \) satisfies \(\Sigma = \Sigma' \cup \{\alpha\} \) and thus also \(\beta \), so \(\Sigma' \models \beta \). Since \(\Sigma' \) has \(n - 1 \) elements, by inductive hypothesis there exists an equivalent independent subset \(\Sigma'_0 \) of \(\Sigma' \). Then \(\Sigma \) and \(\Sigma'_0 \) are also equivalent. (So we may take \(\Sigma_0 := \Sigma'_0 \).)

(b) Consider \(\Sigma = \{A_1, A_1 \land A_2, A_1 \land A_2 \land A_3, \ldots, A_1 \land \cdots \land A_n, \ldots\} \).

(c) The equivalent independent subsets are \(\{\alpha \land \beta, \beta \land \gamma\} \) and \(\{\alpha \land \beta \land \gamma\} \).

2. Take \(\alpha = (A_1 \land A_1) \), \(\beta = A_1 \). Then \((\alpha \land \beta) = (\gamma \land \delta) \) where \(\gamma = (A_1 \land A_1) \) and \(\delta = A_1 \) with \(\alpha \neq \gamma \).

3. Let \(v \) be the truth assignment with \(v(A_n) = T \) for all \(n \). We claim that \(\bar{v}(\alpha) = T \) for every positive wff \(\alpha \). We show this by using the induction principle. If \(\alpha \) is a sentence symbol, then the claim holds trivially: \(\bar{v}(\alpha) = v(A_n) = T \). Otherwise \(\alpha = (\beta \land \gamma) \) where \(\beta \) and \(\gamma \) are positive wffs and \(\square \in \{\land, \lor\} \). By inductive hypothesis we have \(\bar{v}(\beta) = \bar{v}(\gamma) = T \); hence also \(\bar{v}(\alpha) = T \).

4. Can be done in a similar way as the Example on p. 50 of the textbook.

5. Consider the set \(\Sigma_n \) consisting of all wffs of the form \(\square_1 A_1 \lor \cdots \lor \square_n A_n \) where each \(\square_i \) is either empty or equals \(\neg \). So we have

\[\Sigma_1 = \{A_1, \neg A_1\}, \Sigma_2 = \{A_1 \lor A_2, A_1 \lor \neg A_2, \neg A_1 \lor A_2, \neg A_1 \lor \neg A_2\}, \text{etc.} \]

Then every subset of size at most \(n \) of \(\Sigma_n \) is satisfiable; we prove this by induction on \(n \), the case \(n = 1 \) being trivial. Suppose \(\Sigma \) is a subset of \(\Sigma_n \) of size at most \(n \), where \(n > 1 \). If every wff in \(\Sigma \) has the form \(\square A_n \) or every wff in \(\Sigma \) has the form \(\square A_n \lor \neg A_n \) then we are done: any truth assignment \(v \) with \(v(A_n) = T \) (resp. \(v(A_n) = F \)) satisfies \(\Sigma \). So suppose otherwise; so there exists a wff \(\square A_n \) and a wff \(\square A_n \lor \neg A_n \) in \(\Sigma \). Let \(\Sigma' \) be the set of all wffs \(\alpha \) such that \(\alpha \lor \neg A_n \in \Sigma \). Then \(\Sigma' \) is a subset of \(\Sigma_{n-1} \) of size at most \(n - 1 \), so by inductive hypothesis there is a truth assignment \(v' \) satisfying \(\Sigma' \). Then \(v \) defined by \(v(A_i) = v'(A_i) \) for \(i \neq n \) and \(v(A_n) = T \) satisfies \(\Sigma \).