(1) Write out the addition and multiplication tables for \(\mathbb{Z}_4 \) (that is, addition and multiplication mod 4). Find an field axiom that fails.

- In \(\mathbb{Z}_4 \), the element 2 does not have a multiplicative inverse:

 \[
 0 \cdot 2 = 0, \quad 1 \cdot 2 = 2, \quad 2 \cdot 2 = 0, \quad 3 \cdot 2 = 2.
 \]

(2) What would happen if we relax the restriction that the identity elements in a field be distinct?

- Under the new axioms there is exactly one more field, it has one element, say \('e' \) and

 \[
 e + e = e \quad \text{and} \quad e \cdot e = e.
 \]

 The proof is as follows: Suppose \(F \) contains an element \(a \neq 0 \). Then

 \[
 a \cdot 0 + 0 = a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0
 \]

 by subtracting \(a \cdot 0 \) from both sides we obtain \(a \cdot 0 = 0 \). But \(a \cdot 1 = a \neq 0 \) hence \(1 \neq 0 \). This shows that if \(F \) is a field under the new axioms, then either (a) \(F \) contains only one element, or (b) \(0 \neq 1 \) and so \(F \) is a field under the old axioms.

(3) Let \(V \) be a vector space over a field \(F \) show that for all \(a, b \in F \) and all \(x, y \in V \),

 \[
 (a + b)(x + y) = ax + ay + bx + by
 \]

 quoting the appropriate axiom for each step.

- Easy.

(4) Let us write \(0 \) for the zero vector. If \(a \) is an element of the field, show that \(a0 = 0 \).

- Well,

 \[
 a0 + a0 = a(0 + 0) = a0
 \]

 and so subtracting \(a0 \) from both sides gives \(a0 = 0 \).

(5) Find a subset of \(\mathbb{R}^3 \) which is closed under scalar multiplication, but not vector addition.

- It is not difficult to check that the following works:

 \[
 \left\{ \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} : x \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} 0 \\ 0 \\ x \end{pmatrix} : x \in \mathbb{R} \right\}
 \]
(6) Exercise 23 from §1.3.
• (a) As W_1 and W_2 are subspaces, each contains 0. Hence any element $w_1 \in W_1$ belongs to $W_1 + W_2$ because it can be written as $w_1 + 0$. This shows $W_1 \subseteq W_1 + W_2$.

That $W_2 \subseteq W_1 + W_2$ follows by the same argument with roles reversed.

To see that $W_1 + W_2$ is a subspace, we notice that for all $w_1, v_1 \in W_1$, all $w_2, v_2 \in W_2$, and all $c \in F$ we have

$$(w_1 + w_2) + (v_1 + v_2) = (w_1 + v_1) + (w_2 + v_2) \in W_1 + W_2$$

and

$$c(w_1 + w_2) = (cw_1) + (cw_2) \in W_1 + W_2.$$

• (b) Let W be a subspace of V that contains both W_1 and W_2. We need to show that $W_1 + W_2$ is a subset of W. Well given $w_1 \in W_1$ and $w_2 \in W_2$ we know that both belong to W; moreover since W is a subspace, $w_1 + w_2 \in W$. In this way we have shown that each element of $W_1 + W_2$ belongs to W, that is, $W_1 + W_2 \subseteq W$.

(7) Exercises 4(a) and 5(g) from §1.4.
• 4(a) Yes:

$$x^3 - 3x + 5 = 3(x^3 + 2x^2 - x + 1) - 2(x^3 + 3x^2 - 1).$$

• 5(g) Yes:

$$\begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix} = 3 \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} + 4 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$