131BH- Solutions

Homework 5

Problem 9 Assume f is uniformly continuous. Given $\epsilon > 0$ there is $\delta > 0$ such that $d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \epsilon/2$. Assume $\text{diam} E \leq \delta$. Then by the above $\sup \{d_Y(f(x), f(y)) : x, y \in E\} \leq \epsilon/2 < \epsilon$. Conversely, if the diameter condition holds for ϵ and δ, then when $d_X(x,y) < \delta$, $E = \{x, y\}$ has $\text{diam} E < \delta$, so that $d_Y(f(E)) = d_Y(f(x), f(y)) < \epsilon$ and f satisfies the definition of uniform continuity.

Problem 10 Assume f is continuous from the compact space X to the metric space Y, but assume f is not uniformly continuous. Then there exists $\epsilon > 0$ for which the definition of UC fails. That means there are $x_n \in X$ and $y_n \in Y$ such that $d_X(x_n, y_n) < 1/n$ but $d_Y(f(x_n), f(y_n)) \geq \epsilon$. By compactness $\{x_n\}$ has a convergent subsequence $x_{n_j} \to x \in X$ and since $d_X(x_{n_j}, y_{n_j}) \to 0$, we also have $y_{n_j} \to x$. But then $\epsilon \leq \lim sup d_Y(f(x_{n_j}), f(y_{n_j})) = d_Y(f(x), f(x)) = 0$, a contradiction!

Problem 11 Let $f : X \to Y$ be uniformly continuous and let $\{x_n\}$ be a Cauchy sequence in X. For any $\epsilon > 0$ there is $\delta > 0$ such that $d_X(x_n, x_m) < \delta \implies d_Y(f(x_n), f(y_m)) < \epsilon$ by the definition of UC and for δ there is $N > 0$ such that $n > N$ and $m > N \implies d_X(x_n, x_m) < \delta$ by the definition of Cauchy sequence. Thus $d_Y(f(x_n), f(x_m)) < \epsilon$ whenever $n > N$ and $m > N$.

See Problem 13 for an application of Problem 11.

Note that the converse of Problem 11 is also true.

Problem 12 Easy from the definition. Let X, Y and Z be metric spaces with metrics d_X, d_Y and d_Z. Assume $f : X \to Y$ and $g : Y \to Z$ are uniformly continuous. Then given $\epsilon > 0$ there is $\delta > 0$ such that $d_Y(g(y_1), g(y_2)) < \delta \implies d_Z(g(y_1), g(y_2)) < \epsilon$ and there is $\eta > 0$ such that $d_X(x_1, x_2) < \eta \implies d_Y(f(x_1), f(x_2)) < \eta$. Combining these for $y_j = f(x_j)$ we get $d_X(x_1, x_2) < \eta \implies d_Z(g(f(x_1)), g(f(x_2))) < \epsilon$.

Problem 13 For each $p \in X$ let $V_n(p) = E \cap \{q : d_X(g,q) < 1/n\}$. By Exercise 9 and Theorem 3.10 in Rudin $\text{diam} f(V_n(p)) \to 0$ ($n \to \infty$). But each $f(V_n(p))$ is compact because it is closed and bounded. Hence Theorem 3.10 in Rudin also shows that $\bigcap f(V_n(p))$ consists of exactly one point, which we call $g(p)$.

That defines a function $g : X \to \mathbb{R}$ such that $g(x) = f(x)$ when $x \in E$. We must show that g is continuous. But given $\epsilon > 0$ there is $\delta > 0$ such
that if \(x, y \in E \) and \(d_X(x, y) < \delta, |f(x) - f(y)| < \varepsilon/3 \). Let \(d_X(p, q) < \delta/3 \). Take 1/n < \delta/3 and take \(x \in V_n(p) \). Then \(\text{diam}(V_n(p)) \leq \varepsilon/3 \), so that \(|g(p) - f(x)| \leq \varepsilon/3 \). Similarly, if \(y \in V_n(q) \), \(|f(y) - g(q)| \leq \varepsilon/3 \). But also \(d_X(x, y) < \delta \). Hence

\[
|f(x) - f(y)| < \varepsilon
\]

Note that this also shows \(g \) is uniformly continuous.

The above argument also works if \(f \) has range any compact metric space, because Theorem 3.10 is valid for compact metric spaces.

The theorem is also true if \(f \) has range a complete metric space, and the proof based on Problem 11 works in that case. To use Problem 11, take \(x_n \in V_n(p) \). Then \(\{x_n\} \) is a Cauchy sequence, and by Problem 11, \(f(x_n) \) is a Cauchy sequence. Let \(g(p) = \lim f(x_n) \) (range is complete). Then the \(\varepsilon/3 \) proof that \(g \) is continuous works in this case as well.

If \(X = [0, 1], E = Y = (0, 1] \) and \(f(x) = x \) then \(E \) is dense in \(X \) and \(f : E \rightarrow Y \) is uniformly continuous but \(f \) has no continuous extension to \(Y \).

Note that this exercise, plus the fact that a continuous function on a compact set is uniformly continuous, gives another proof of Exercise 5 at least for bounded closed sets.

Problem 14. Note that this is easy if \(f(0) = 0 \) or if \(f(1) = 1 \). Thus we may assume \(f(0) > 0 \) and \(f(1) < 1 \). Draw a picture. Now let

\[
F(x) = f(x) - x.
\]

Then \(F \) is continuous on \(I \), \(F(0) > 0 \) and \(F(1) < 1 \). By the intermediate value theorem 4.23, \(F(x) = 0 \) for some \(x \in I \). But then \(f(x) = x \).

Note: This is called the Brower Fixed Point Theorem. It is also true for maps from the unit cube of \(\mathbb{R}^n \) into itself, but the proof is harder. One proof uses algebraic topology, a second proof uses advanced calculus cleverly.

Problem 16 Both \([x] \) and \(\{x\} = x - [x] \) are continuous except at the integers, where both have discontinuities of the first kind.

Problem 17 The hint says it all.