Math 131AH Assignment 2

Due Tuesday, October 19, 2004

1. For n and m any two natural numbers, prove: $n \times 0 = 0$, $n \times (m^+) = n \times m + n$, and $n \times m = m \times n$.

2. For a, b and c arbitrary natural numbers, prove $a \times (b \times c) = (a \times b) \times c$.

3. For a and b arbitrary integers, prove

$$a \times b = 0 \Rightarrow a = 0 \text{ or } b = 0.$$

4. For a, b and c arbitrary integers, prove:
 (i) $a > b$ if and only if there is positive natural number n such that $a = b + n$.
 (ii) If $a > b$, then $a + c > b + c$, and if c is a positive natural number then $ac > bc$.
 (iii) $a > b$ if and only if $-b > -a$.
 (iv) If $a > b$ and $b > c$, then $a > c$.
 (v) If $a \geq b$ and $b \geq a$, then $a = b$.

5. Let x be a rational number. Prove that exactly one of the following holds: (i) $x = 0$, (ii) x is a positive rational number, or (iii) x is a negative rational number.

6. Let x, y and z be rational numbers. Prove:
 (i) Exactly one of the three statements $x = y$, $x > y$, or $x < y$ holds.
 (ii) $x < y \iff y > x$.
 (iii) $(x < y \text{ and } y < z) \implies x < z$.
 (iv) $x < y \implies x + z < y + z$.
 (v) $(z \text{ positive and } x < y) \implies xz < yz$.