Fall 2006 Math 33B, Lecture 1 Midterm I

Name:

UCLA ID:

Discussion session (circle one)
1A (Faizal Sainal, Tuesday) 1B (Faizal Sainal, Thursday)
1C (Chris Vogl, Tuesday) 1D (Chris Vogl, Thursday)

Directions: Fill in your name and circle your section above. No outside materials are allowed. Show all the necessary steps involved in finding your solutions, unless otherwise instructed. Good luck.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>
1. (25 pts) Suppose a tank initially contains 100 gallons of salt-water solution containing \(k \) lb of salt per gallon. Salt-water solution containing 1 lb of salt for each gallon of water begins entering the tank at a rate of 2 gal/min at \(t = 0 \). Simultaneously, a drain is opened at the bottom of the tank, allowing the salt-water solution to leave the tank at a rate of 1 gal/min. We assume that the tank is of infinite capacity and thus never overflows.

(20 pt)(a) Suppose there is 2 lb. of salt in the tank after 10 minutes. Find \(k \).

Let \(X(t) \) the amount of salt (lb) in the tank at time \(t \). Then we get the DE
\[
\frac{dX}{dt} = \text{rate in} - \text{rate out}
\]
\[
= 2 - \frac{1}{100 + t} X(t).
\]

Multiplying integration factor \(\mu(t) = \exp\int \frac{1}{100+t} dt = 100 + t \), to both sides, one obtains
\[
((100 + t)X(t)) = \int 2(100 + t)dt = 200t + t^2 + C.
\]

Hence \(X(t) = \frac{200t + t^2 + C}{100 + t} \). Since \(X(0) = 100k \), we have
\[
X(t) = \frac{200t + t^2 + (100)^2 k}{100 + t}.
\]

Now if you plug in \(X(10) = 2 \), then we will get negative \(k \), which is not possible physically. Hence you get the full score if you are correct up to this point.

(5 pt) (b) Eventually (as \(t \) goes infinity) how much salt per gallon of water will be in the tank?

As \(t \) goes to infinity, the eventual salt/gallon ratio will be the same as what is coming in, that is 1 lb per gallon.

(We covered a question like this in the class (and in the homework): no more explanation is needed.)
2. (25 pts) For the differential equation

\[(x - y)\frac{dy}{dx} + (f(y) - \cos x) = 0.\]

(15 pt) (a) Suppose the associated differential form is exact with \(f(0) = 0\). Find \(f(y)\) and find the general solution of the form \(F(x, y) = C\).

Here \(P = f(y) - \cos x\) and \(Q = (x - y)\). To be exact, \(dP/dy = f'(y) = dQ/dx = 1\). Since \(f(0) = 0\), we obtain \(f(y) = y\).

We need to look for solutions of \((x - y)dy + (y - \cos x)dx = 0\) in the form \(F(x, y) = C\). We solve for

\[\frac{\partial F}{\partial x} = y - \cos x, \quad \partial F/\partial y = x - y.\]

If we integrate the first equation with respect to \(x\) then we get \(F(x, t) = xy - \sin x + \phi(y)\). If we plug \(F\) into the second equation, we get \(\phi'(y) = -y\). Thus \(\phi(y) = -\frac{1}{2}y^2\) and the solution is

\[F(x, y) = xy - \sin x - \frac{1}{2}y^2 = C.\]

(10 pt) (b) Let \(f(y) = \sin y\). Then the equation is not exact. Show that there is at least one solution of the differential equation with initial value \(y(1) = 0\).

The differential equation in normal form is

\[
\frac{dy}{dx} = \frac{\sin y - \cos x}{x - y}.
\]

The function on the right side is continuous near the point \((x, y) = (1, 0)\). (you may say in a rectangle containing \((1, 0)\), for example \((1/2, 3/2) \times (-1/4, 1/4)\)). Hence by the existence theorem (theorem 7.15) in 2.7, there is at least one solution of the initial value problem.
3. (25 pt) Consider the following initial value problem

\[y' = y^2 - \cos^2 t - \sin t \text{ and } y(0) = 2. \]

Show that \(y(t) > \cos t \) for all \(t \) for which \(y \) is defined.

First note that \(y = \cos t \) is a solution since

\[(\cos t)' = -\sin t = (\cos t)^2 - \cos^2 t - \sin t. \]

Also \(f(y, t) = y^2 - \cos^2 t - \sin t \) and \(\frac{\partial f}{\partial y} = 2y \) is continuous for all \((y, t)\), so the uniqueness theorem (theorem 7.16) holds and two solution curves cannot cross or touch each other.

Since \(y(0) = 2 > \cos 0 = 1 \), it follows that \(y(t) > \cos t \) for all \(t \).
4. (25 pt) The graph of the right-hand side of $y' = f(y)$ is given as below:

Identify equilibrium solutions and classify them as stable or asymptotically unstable. Draw solution curves in $t-y$ plane, and explain the behavior of solutions as $t \to \infty$ in terms of their initial condition $y(0) = c$.

a and c are asymptotically unstable and b is stable.

As $t \to \infty$: If $y(0) < a$ then $y(t) \to -\infty$. If $y(0) = a$ then $y = a$. If $a < y(0) < c$, then $y(t) \to b$. If $y(0) \geq c$, then $y(t) \to c$.

(Pictures are omitted).