Please provide complete and well-written solutions to the following exercises.

Due May 28, in the discussion section.

Assignment 7

Exercise 1. Let A be an $m \times n$ matrix. Let B be an $\ell \times m$ matrix. Show that $(BA)^t = A^tB^t$.

Exercise 2. Let $n \in \mathbb{N}$. Let S_n denote the set of permutations on $\{1, \ldots, n\}$. For any $\sigma \in S_n$, define $\text{sign}(\sigma) := (-1)^N$, where σ can be written as the product of N transpositions.

Now, let A be an $n \times n$ matrix with entries $A_{ij}, i, j \in \{1, \ldots, n\}$. Consider the expression

$$F(A) := \sum_{\sigma \in S_n} \text{sign}(\sigma) \prod_{i=1}^{n} A_{i \sigma(i)}.$$

(a) Let A be a 2×2 matrix. Show directly that $F(A) = \det(A)$. (Hint: there are only two elements in S_2. What are they?)

(b) Show that for any $n \times n$ matrix, $F(A) = \det(A)$.

Exercise 3. Let A denote the following matrix.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 5 & 0 \end{pmatrix}.$$

Compute $\det(A)$. Explain what formula you are using, and why your computation of $\det(A)$ is correct. (Hint: use the previous exercise.)

Exercise 4. Let \mathbf{F} be a field, and let M be an $n \times n$ matrix with entries in the field \mathbf{F}. Suppose there exist matrices A, B such that A is a square matrix, and such that M can be written as

$$M = \begin{pmatrix} A & B \\ 0 & I \end{pmatrix}.$$

Show that $\det(M) = \det(A)$.

Exercise 5. Let \mathbf{F} be a field, and let M be an $n \times n$ matrix with entries in the field \mathbf{F}. Suppose there exist matrices A, B, C such that A is a square matrix, and such that M can be written as

$$M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}.$$

Show that $\det(M) = \det(A) \cdot \det(C)$. (Hint: consider the matrix product $\begin{pmatrix} I & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} A & B \\ 0 & I \end{pmatrix}$, and apply the previous exercise to the result.)
Exercise 6. Define
\[A := \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}. \]

- Find all of the eigenvalues of \(A \).
- For each eigenvalue \(\lambda \) of \(A \), find the set of eigenvectors corresponding to \(\lambda \).
- Find a basis for \(\mathbb{R}^2 \) consisting of eigenvectors of \(A \) (if possible).
- If you can find a basis of \(\mathbb{R}^2 \) consisting of eigenvectors of \(A \), then find an invertible matrix \(Q \) and a diagonal matrix \(D \) such that \(Q^{-1}AQ = D \).

Exercise 7. Section 5.1, Exercise 8 in the textbook. (The phrase “\(T \) is a linear operator on a vector space \(V \)” means that \(T : V \to V \) is a linear transformation.)

Exercise 8. Let \(T \) be a linear transformation on a vector space \(V \), and let \(x \) be an eigenvector of \(T \) corresponding to the eigenvalue \(\lambda \). For any positive integer \(m \), prove that \(x \) is an eigenvector of \(T^m \) corresponding to the eigenvalue \(\lambda^m \). Then, state and prove an analogous result for matrices.

Exercise 9. Define \(T : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R}) \) by \(T(A) := A^t \). Note that \(T \) is a linear transformation.

- Show that \(\pm 1 \) are the only eigenvalues of \(T \).
- Describe the eigenvectors corresponding to each eigenvalue of \(T \).
- Find an ordered basis \(\beta \) for \(M_{2 \times 2}(\mathbb{R}) \) such that \([T]_\beta^\beta \) is a diagonal matrix.
- Find an ordered basis \(\beta \) for \(M_{n \times n}(\mathbb{R}) \) such that \([T]_\beta^\beta \) is a diagonal matrix for \(n > 2 \).

Exercise 10. Section 5.2, Exercise 2(ab) in the textbook.

Exercise 11. Consider the following 2 \(\times \) 2 matrix.
\[A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}. \]

Let \(n \) be an arbitrary positive integer. Find an expression for \(A^n \).