This homework should be submitted just before the beginning of class, on March 26th, 2012. You should bring a copy of your homework to class, in order to participate in class discussion around your homework.

Please read carefully the following instructions:

This homework is based on questions from the midterm exam and on your responses to them. For three problems (1, 6, 7) we offer a skeleton of a proof, and you are required to add all the missing parts, including the Given, the RTP, and the justification for each step.

For two problems (2, 3) we offer a full proof. For these problems we provide a sample of responses that have flaws, inaccuracies, and/or redundancy. You need to point to all the flaws, inaccuracies and redundant (unnecessary) steps in the responses and explain why you regard them as such.
1. Let $n \in \mathbb{Z}$. Prove that if $5n - 7$ is even then n is odd.

Given:

RTP:

A skeleton of a proof:

$$5n - 7 = 2k$$

$$5n = 2k + 7$$

odd \times n = odd

n = odd
6. Let $x, y \in \mathbb{Z}$.

(a) Prove that $(x^2 - y^2)$ is divisible by 4 if x and y are of the same parity (i.e., either both x and y are even or both x and y are odd).

Given:

RTP:

A skeleton of a proof:

\[x + y = 2n \]
\[x - y = 2k \]
\[x^2 - y^2 = 4nk \]
\[\frac{x^2 - y^2}{4} = nk \]
7. (a) Prove that for any two positive numbers x, y, their arithmetic mean is larger than or equal to their geometric mean, i.e.: $\sqrt{x \cdot y} \leq \frac{x + y}{2}$

Given:

RTP:

A skeleton of a proof:

$$(x - y)^2 \geq 0$$

$$x^2 + y^2 - 2xy \geq 0$$

$$x^2 + y^2 + 2xy \geq 4xy$$

$$(x + y)^2 \geq 4xy$$

$$\frac{x+y}{2} \geq \sqrt{xy}$$

(b) When are these two means equal? That is, under what conditions does $\sqrt{x \cdot y} = \frac{x+y}{2}$ for positive numbers x and y? Prove your claim.

Given:

RTP:

A skeleton of a proof:

$$\frac{x+y}{2} = \sqrt{xy}$$

$$x + y = 2\sqrt{xy}$$

$$x^2 + y^2 + 2xy = 4xy$$

$$(x - y)^2 = 0$$

$$x = y$$
2. Let \(x, y \in R \). Prove that \(|x \cdot y| = |x| \cdot |y|\).

Given: \(x, y \in R \)

RTP: \(|x \cdot y| = |x| \cdot |y|\)

A Proof: We use the following definition of the Absolute Value of a real number \(r \):

\[
|r| = \begin{cases}
 r, & \text{if } r \geq 0 \\
 -r, & \text{if } r \leq 0
\end{cases}
\]

There are 3 cases we need to check:

Case 1: \(x \geq 0, y \geq 0 \);

Case 2: \(x \geq 0, y \leq 0 \);

Case 3: \(x \leq 0, y \leq 0 \)

- **Case 1:**
 \[
x \geq 0 \Rightarrow |x| = x \]
 \[
y \geq 0 \Rightarrow |y| = y
 \Rightarrow |x| \cdot |y| = x \cdot y

 \[
x \geq 0, y \geq 0 \Rightarrow x \cdot y \geq 0 \Rightarrow |x \cdot y| = x \cdot y

 \[
\]

- **Case 2:**
 \[
x \geq 0 \Rightarrow |x| = x
 \]
 \[
y \leq 0 \Rightarrow |y| = -y
 \Rightarrow |x| \cdot |y| = x \cdot (-y) = -(x \cdot y)

 \[
x \geq 0, y \leq 0 \Rightarrow x \cdot y \leq 0 \Rightarrow |x \cdot y| = -(x \cdot y)

 \[
\]

- **Case 3:**
 \[
x \leq 0 \Rightarrow |x| = -x
 \]
 \[
y \leq 0 \Rightarrow |y| = -y
 \Rightarrow |x| \cdot |y| = (-x) \cdot (-y) = x \cdot y

 \[
x \leq 0, y \leq 0 \Rightarrow x \cdot y \leq 0 \Rightarrow |x \cdot y| = x \cdot y

 \[
\]

Q.E.D.
SAMPLE RESPONSES FOR PROBLEM 2:

Response 2.1:

Case 1
Let \(x = -a \) and \(y = -b \)

\[
|a \cdot -b| = |a| \cdot |-b| \\
a \cdot b = a \cdot b
\]

Case 2
Let \(x = -a \) and \(y = b \)

\[
|a \cdot b| = |-a| \cdot |b| \\
a \cdot b = a \cdot b
\]

Case 3
Let \(x = a \) and \(y = b \)

\[
|a \cdot b| = |a| \cdot |b| \\
a \cdot b = a \cdot b
\]

Response 2.2:

RTP: \(|x \cdot y| = |x| \cdot |y| \)

Proof:

\[
\Rightarrow (xy)^2 = x^2 \cdot y^2 \quad (\text{square both sides and get rid of the absolute value}) \\
\Rightarrow \sqrt{(xy)^2} = \sqrt{x^2 \cdot y^2} \quad (\text{take square root to get rid of squared}) \\
\Rightarrow xy = \sqrt{x^2} \cdot \sqrt{y^2} \\
\Rightarrow xy = x \cdot y \\
\checkmark
\]
Response 2.3:

Given: \(x, y \in \mathbb{R} \)

RTP: \(|x \cdot y| = |x| \cdot |y| \)

Proof: When you multiply \(x \) and \(y \), depending on what they are equal to, you may get a positive or negative answer. The absolute value of \(x \cdot y \) will ensure that the answer is positive.

Example:

\[
\begin{align*}
|5 \cdot 6| &= 30 ; |5| \cdot |6| = 30 \\
|-5 \cdot -6| &= 30 ; |-5| \cdot |-6| = 30 \\
|5 \cdot -6| &= 30 ; |5| \cdot |-6| = 30 \\
|-5 \cdot 6| &= 30 ; |-5| \cdot |6| = 30
\end{align*}
\]

When you put absolute value brackets around \(x \) and \(y \) separately, this makes both \(x \) and \(y \) positive factors, which must result in the same positive value that \(|x \cdot y| \) gives you.
3. (a) Prove that \(n^3 - 3n^2 - 9 \geq 0 \) for \(n \geq 6 \), \(n \in N \).

(b) Does this inequality hold for \(n > 6 \), \(n \in N \)? Why?

(c) Does this inequality hold for \(n \geq 10 \), \(n \in N \)? Why?

(d) Does this inequality hold for \(n \geq 4 \), \(n \in N \)? Why?

(e) Does this inequality hold for \(n \geq 2 \), \(n \in N \)? Why?

Part (a):

Given: \(n \geq 6 \), \(n \in N \)

RTP: \(n^3 - 3n^2 - 9 \geq 0 \)

A Proof:

\[
\begin{align*}
n^3 &= n \cdot n^2 \quad (\text{follows from the definition of a power of } n) \\
&\Rightarrow n^3 - 3n^2 - 9 = n \cdot n^2 - 3n^2 - 9 = (n - 3) \cdot n^2 - 9 \\
&\quad \text{given} \\
&\quad n \geq 6 \\
&\downarrow \\
n - 3 &\geq 6 - 3 = 3 \\
&\quad , \quad n^2 \geq 36 \\
&\downarrow \\
(n - 3) \cdot n^2 - 9 &\geq 3 \cdot 36 - 9 \geq 0 \\
&\downarrow \\
n^3 - 3n^2 - 9 &\geq 0 \\
&\quad \text{Q.E.D.}
\end{align*}
\]

Part (b):

Yes. \(n > 6 \), \(n \in N \) is included in \(n \geq 6 \), \(n \in N \), and we proved the inequality for \(n \geq 6 \), \(n \in N \).

Part (c):

Yes. \(n \geq 10 \), \(n \in N \) is included in \(n \geq 6 \), \(n \in N \), and we proved the inequality for \(n \geq 6 \), \(n \in N \).

Part (d):

Yes. For \(n = 4 \), \(n^3 - 3n^2 - 9 = 7 \geq 0 \) and for \(n = 5 \), \(n^3 - 3n^2 - 9 = 41 \geq 0 \).

We proved the inequality for \(n \geq 6 \), \(n \in N \) and showed that it holds for \(n = 4 \) and for \(n = 5 \), thus it holds for \(n \geq 4 \), \(n \in N \).

Part (e):

No. For \(n = 3 \) the inequality does not hold: \(n^3 - 3n^2 - 9 = -9 < 0 \).
SAMPLE RESPONSES FOR PROBLEM 3:

Response 3.1:
(a) Let \(n = 6 \).
\[
6^3 - 3 \cdot 6^2 - 9 \geq 0
\]
\[
99 \geq 0
\]
(c) Let \(n = 10 \).
\[
10^3 - 3 \cdot 10^2 - 9 \geq 0
\]
\[
691 \geq 0
\]
(d) Let \(n = 4 \).
\[
4^3 - 3 \cdot 4^2 - 9 \geq 0
\]
\[
7 \geq 0
\]

Response 3.2:
(a) Given: \(n \geq 6 \).
Prove: \(n^3 - 3n^2 - 9 \geq 0 \)
\[
n^3 - 3n^2 \geq 9 \text{ (add 9 to both sides)}
\]
\[
n^2(n - 3) \geq 9 \text{ (factor out } n^2\text{)}
\]
\[
6^2(6 - 3) \geq 9 \text{ (substitute 6 for } n\text{, because 6 is the lowest possible number for } n, \text{ so if } n \geq 6 \text{, then any number above 6 will be } \geq \text{ also)}
\]
\[
36 \cdot (3) \geq 9
\]
\[
\checkmark
\]
(c) Yes, because the inequality is true when \(n \geq 6 \), so it will only get bigger, the larger \(n \) is.
Response 3.3:

(a) \(n^3 - 3n^2 - 9 \geq 0 \) for \(n \geq 6 \).

Proving by using the contrapositive of the statement:

The contrapositive is \(n < 6 \) for \(n^3 - 3n^2 - 9 < 0 \).

\[
\begin{align*}
& n < 6, \ n \in N \ \Rightarrow \ n \cdot n^2 < 6n^2 \ \Rightarrow \ n^3 < 6n^2 \ \Rightarrow \ n^3 - 6n^2 < 0 \\
& \Rightarrow n^3 - 6n^2 + 3n^2 < 3n^2 \ \Rightarrow \ n^3 - 3n^2 < 3n^2 \ \Rightarrow \ n^3 - 3n^2 - 9 < 3n^2 - 9 \\
& \Rightarrow n^3 - 3n^2 - 9 < 3(n^2 - 1) \ \Rightarrow \ n^3 - 3n^2 - 9 < 3(n-1)(n+1)
\end{align*}
\]

(d) For \(n \geq 4 \)?

No, the inequality doesn’t hold for \(n \geq 4 \) because 5 is not in the original statement. However, values for \(n \geq 4 \) will still make the inequality greater than 0.