Please provide complete and well-written solutions to the following exercises.

Due February 20, at the beginning of class.

Assignment 7

Exercise 1. Integrate the function \(f(x, y, z) = yz \) over the part of the sphere \(x^2 + y^2 + z^2 = 4 \) that lies above the cone \(z = \sqrt{x^2 + y^2} \).

Exercise 2. Let \(f(x, y, z) = x^2 \). Compute \(\iint_S f \, dS \) where \(S \) is the surface \(x^2 + y^2 + z^2 = 1 \) with \(x, y, z \geq 0 \).

Exercise 3. Find the surface area of the part of the cone \(z^2 = x^2 + y^2 \) between the planes \(z = 1 \) and \(z = 4 \).

Exercise 4. Let \(a, b, c \) be positive constants. An ice cream cone is defined as the surface \(z = a\sqrt{x^2 + y^2} \) where \(z \leq b \). Suppose the ice cream cone has surface area \(c \). Find the ice cream cone of fixed surface area \(c \) and with maximum volume. (This way, you get to eat the most ice cream with the least amount of material.)

Exercise 5. Let \((x, y, z)\) be a point in Euclidean space \(\mathbb{R}^3 \). Let \(G, m \) be constants. Let \(S \) denote the sphere of radius \(R \) centered at the origin. Let \(dS \) denote the surface area element of \(S \) with respect to variables \(a, b, c \). Define the following function, which is the gravitational potential of \(S \) at the point \((x, y, z)\).

\[
V(x, y, z) = -\frac{Gm}{4\pi R^2} \iint_S \frac{dS}{\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}}
\]

- Using a symmetry argument, show that \(V(x, y, z) \) only depends on \(||(x, y, z)|| \). That is, if \(\Phi: \mathbb{R}^3 \to \mathbb{R}^3 \) is a rotation, then \(V(x, y, z) = V(\Phi(x, y, z)) \). (Hint: it may be helpful to write \((a, b, c) = \Phi(\Phi^{-1}(a, b, c)) \), and then to use \(||\Phi(d, e, f)|| = ||(d, e, f)|| \), and also use \(\Phi((a, b, c) + (d, e, f)) = \Phi(a, b, c) + \Phi(d, e, f) \). Then, use that \(dS \) does not change when we apply the rotation \(\Phi^{-1} \). That is, if \(f(a, b, c) \) is a function, you may assume that \(\iint_S f(a, b, c) \, dS = \iint_S f(\Phi^{-1}(a, b, c)) \, dS \). So, to compute \(V \) at any point, it suffices to compute \(V(0, 0, r) \) for any \(r \geq 0 \). That is, we have shown that \(V(x, y, z) = V(0, 0, ||(x, y, z)||) \).
- Let \(r \geq 0 \). Using spherical coordinates, show that

\[
V(0, 0, r) = -\frac{Gm}{4\pi} \int_{\phi=0}^{\phi=\pi} \int_{\theta=0}^{\theta=2\pi} \sin \phi \, d\theta \, d\phi \frac{1}{\sqrt{R^2 + r^2 - 2Rr \cos \phi}}
\]

- Using the substitution \(u = R^2 + r^2 - 2Rr \cos \phi \), show that

\[
V(0, 0, r) = -\frac{mG}{2Rr} (|R + r| - |R - r|).
\]
Verify that \(V \) satisfies the following formula

\[
V(x, y, z) = \begin{cases}
-\frac{Gm}{||(x, y, z)||}, & \text{if } ||(x, y, z)|| > R \\
-\frac{Gm}{R}, & \text{if } ||(x, y, z)|| < R
\end{cases}
\]

In particular, a hollow sphere exerts no gravitational force inside the sphere.

Exercise 6. Let \(F(x, y, z) = (x, y, z) \) be a vector field. Let \(a \) be a real number. Compute the flux \(\iint_S F \cdot e_n \, dS \) outward through the surface \(S \) where \(x^2 + y^2 = 1 \) and \(0 \leq z \leq a \).

Exercise 7. Find the flux of the vector field \(F(x, y, z) = (xze^y, -xze^y, z) \) through the part of the plane \(x + y + z = 1 \) that lies in the first octant, where the flux is oriented downwards. (That is, you should choose the normal vector with negative \(z \) component.)

Exercise 8. Let \(F(x, y, z) = (x, y, e^z) \) be a vector field. Compute \(\iint_S F \cdot e_n \, dS \) where \(S \) is the surface \(x^2 + y^2 = 9 \), \(1 \leq z \leq 4 \), and \(e_n \) denotes the outward pointing unit normal vector to \(S \).