Please provide complete and well-written solutions to the following exercises.

Assignment 6

No due date, but the quiz in Week 6 in the discussion section (on November 3rd or 5th) will be based upon this homework.

Exercise 1. Let \(f(x, y) = x^2 + y^2 \). Compute the partial derivatives: \(f_{xx}, f_{xy}, f_{yx}, f_{yy} \).

Exercise 2. Let \(f(u, v, w, x, y, z) = u^2/v + vx + yz + \sin(xw) \). Compute the partial derivatives: \(f_{uv}, f_{wz}, f_{xyz} \).

Exercise 3. Consider the following function \(f : \mathbb{R}^2 \to \mathbb{R} \).

\[
f(x, t) = \frac{1}{\sqrt{t}}e^{-x^2/(4t)}, \quad t > 0.
\]

Show that \(f \) satisfies the heat equation (for one spatial dimension \(x \)):

\[
\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}.
\]

The function \(f \) represents a single point of heat emanating through an infinite rod (the \(x \)-axis) as time passes (as \(t \) increases, \(t \geq 0 \)). The heat equation roughly says that the rate of change of heat \(f \) at the point \(x \) and at time \(t \) is equal to the average difference between the current heat at \(x \), and the neighbors of \(x \). The quantity \(\partial f/\partial t \) is the rate of change of heat, while the second derivative on the right is perhaps better understood using the second-difference quotient:

\[
\frac{\partial^2 f}{\partial x^2} = \lim_{h \to 0} \frac{f(x - h, t) - 2f(x, t) + f(x + h, t)}{h^2}.
\]

Exercise 4. Consider a function \(f(x, y, t) \) of three variables. The heat equation for two spatial dimensions \(x, y \) says

\[
\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.
\]

This equation can be interpreted in a similar way to the previous equation. As time goes to infinity, eventually the heat reaches an equilibrium, i.e. the heat does not change anymore, so \(\partial f/\partial t \) goes to zero as \(t \to \infty \). So, as \(t \to \infty \), the heat equation will say that \(f_{xx} + f_{yy} = 0 \). We define \(f_{xx} + f_{yy} \) to be the Laplacian \(\Delta \). That is, given a function \(g(x, y) \) of two variables, define

\[
\Delta g(x, y) = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}.
\]

A function \(g \) satisfying \(\Delta g = 0 \) is called harmonic. Understanding harmonic functions allows us to understand equilibrium configurations of heat. Show that the following functions are harmonic:
• \(g(x, y) = x \).
• \(g(x, y) = \tan^{-1}(y/x) \).
• \(g(x, y) = \ln(x^2 + y^2) \).

Exercise 5. Consider the following function \(f : \mathbb{R}^2 \to \mathbb{R} \):

\[
f(x, y) = \begin{cases}
\frac{x^3 y}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \\
0, & \text{if } (x, y) = (0, 0)
\end{cases}
\]

Show that \(\frac{\partial^2 f}{\partial x \partial y}(0, 0) \neq \frac{\partial^2 f}{\partial y \partial x}(0, 0) \). (You will need to use the definition of the derivative itself, using limits.) So, it is not always true that \(f_{xy} = f_{yx} \).