Sample Problems for Midterm (continued)

14. Solution (particular) is \(\frac{1}{p(iw)} e^{iwx} \) for \(\text{RHS} = e^{iwx} \)

where \(p(\lambda) = \lambda^2 + \pi \lambda + k \). (Note that \(p(iw) \)

\(\neq 0 \) since roots of \(p(\lambda) \) are \(\frac{-\pi \pm \sqrt{\pi^2 - 4k}}{2} \),

which cannot be pure imaginary. Another reason: \(p(iw) \)

\(= -w^2 + k + i2w \) which cannot be 0 since \(\text{Im part} = 2w \)

and \(p(0) \neq 0 \) to \(w \neq 0 \) and hence \(2w \neq 0 \) is only possibility.

Now:

\[\frac{1}{k - w^2 + i2w} (\cos wx + i \sin wx) = \frac{1}{p(iw)} e^{iwx} \]

So:

\[\frac{iwx}{p(iw)} = \frac{(k - w^2) - i2w}{(k - w^2)^2 + (2w)^2} (\cos wx + i \sin wx). \]

Taking imaginary parts:

\[\text{Im} \left[\frac{iwx}{p(iw)} \right] = \frac{1}{(k - w^2)^2 + (2w)^2} \left[(k - w^2) \sin wx - (2w) \cos wx \right] \]

There is an angle \(\phi \) with \(\cos \phi = \frac{k - w^2}{\sqrt{(k - w^2)^2 + (2w)^2}} \) and \(\sin \phi = \frac{2w}{\sqrt{(k - w^2)^2 + (2w)^2}} \),

because the sum of squares of these two things is 1. Then

\[\text{Im} \left[\frac{iwx}{p(iw)} \right] = \sin \left(wx - \phi \right) \]

by usual formula for \(\sin(A - B) \). So particular solution of diff eq, \(\text{RHS} = \sin wx \)

is:

\[\frac{1}{\sqrt{(k - w^2)^2 + (2w)^2}} \sin \left(wx - \phi \right). \]

General sol = this + general solution to homogeneous equation, which (as was shown earlier) gen hom. sol is transient.
This finishes part (a). For part (b), note that max amplitude of the \(\sqrt{\frac{1}{\sin^2(\omega t - \phi)}} \) part occurs for that \(\omega \) value (if any) for which \(\frac{1}{\sin^2} \) is minimum, i.e. \((k - \omega^2)^2 + T^2 \omega^2 \) attains its minimum. This is \(\omega^4 + \left(\frac{T^2 - 2k}{2} \right) \omega^2 + \frac{k^2}{2} \). Think of this as a quadratic polynomial in \(\omega^2 \geq 0 \). Its minimum point on \([0, \infty)\) is either \(\omega = 0 \) or where \(\omega^2 = -\text{coefficient of } \omega^2 = \frac{2k - T^2}{2} \)

So condition for a "nondegenerate" minimum \((\omega^2_{\text{min}} > 0) \) is
\[-T^2 + 2k > 0. \]
Assuming this condition is met, minimum is
\[
(\omega^2 - \frac{T^2}{2})^2 + \left(\frac{1}{2}(T^2 - 2k)(2k - T^2) + k^2 \right)
= k^2 - \frac{T^2}{2} k + \frac{T^4}{4} + \frac{1}{2}(-T^4 + 4k^2 + 4kT^2) + k^2
= -\frac{1}{4} T^4 - k^2 + kT^2
= (\frac{1}{4})(-T^4 + 4kT^2) = \frac{1}{4} T^2 (4k - T^2)
\]
Note that \(4k - T^2 > 0 \) since \(2k - T^2 > 0 \). So max amplitude is
\[
\frac{1}{\sqrt{\frac{1}{4} T^2 (4k - T^2)}} = \frac{\sqrt{4}}{\sqrt{T^2 (4k - T^2)}} = \frac{1}{T (k - \frac{T^2}{2})}.
\]
Note that when \(T \) is small (not much damping), this is large. Also when \(\omega \) is small, max amplitude occurs near \(\omega^2 = k \), the undamped resonance.