Solving \[\frac{d^k y}{dx^k} + p_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \ldots + p_1 y = f(x) \]

when \(p_i \)s are constants and \(f(x) = e^{ax} \)

[Here \(a \) can be a complex number!]

With \(P(\lambda) = \lambda^n + p_1 \lambda^{n-1} + \ldots + p_n \) (polynomial of degree \(n \))

Case 1) If \(P(a) \neq 0 \), then \(y = \frac{1}{P(a)} e^{ax} \) solves the equation.

Proof is by direct substitution: \(P(D) e^{ax} = P(a) e^{ax} \).

Case 2) If \(P(a) = 0 \), then let \(k > 0 \) be the largest \(k \) \([\text{largest power of} (\lambda - a)]\) such that \((\lambda - a)^k \) divides into \(P(\lambda) \), so \(P(\lambda) = (\lambda - a)^k Q(\lambda) \) where \(Q(a) \neq 0 \). Then

\[y = \frac{1}{k! Q(a)} x^k e^{ax} \] solves the equation.

Proof: \(P(D) = Q(D) (D-a)^k \). Now

\((D-a)^k (x^k e^{ax}) = k! e^{ax} \) (proof by induction: later).

So \(Q(D) [(D-a)^k x^k e^{ax}] = k! Q(a) e^{ax} \)

since \(Q(D) e^{ax} = Q(a) e^{ax} \) as in case 1).

Induction proof that \((D-a)^k (x^k e^{ax}) = k! e^{ax} \) for \(k \geq 0 \)

\(k = 1 \) case is direct calculation \((D-a)(x e^{ax}) = e^{ax} + a x e^{ax} - a x e^{ax} = e^{ax} \).

Induction step: \((D-a)^{k+1} (x^{k+1} e^{ax}) = (D-a)^k \left[(D-a) (x^{k+1} e^{ax}) \right] \)

\[= (D-a)^k \left[(k+1) x^k e^{ax} + x^{k+1} a x e^{ax} - a x^{k+1} e^{ax} \right] \]

\[= (k+1) [(D-a)^k (x^k e^{ax})] = (k+1) k! e^{ax} = (k+1)! e^{ax} \]

assuming \(k \) case works, \(k \geq 1 \)