Our completeness axiom: If S is a non-empty subset of \mathbb{R}, and S is bounded above (i.e., $S \leq b$ for some b), then S has a least upper bound $b_0 = \sup S$. (You formulate the corresponding result for non-empty sets that are bounded below).

Here are theorems about sequences and their limits that you should be able to prove (including the relevant definitions):

- If x_n is a convergent sequence, then it must be bounded.
- If $x_n \to L$ and $x_n \neq 0$ and $L \neq 0$, then there is a constant $c > 0$ such that $|x_n| \geq c$ for all n.
- If $x_n \to L$ and for all n, $x_n \geq 0$, then $L \geq 0$. Note this was accidentally omitted from the original version of this list.
- The usual limit theorems (such as $x_n \to L$ and $y_n \to M$ implies $x_n + y_n \to L + M$)
- If x_n is an increasing sequence, and $x_n \leq b$, then $x_n \to b_0 = \sup \{x_n\}$. (You should be able to state and prove the corresponding result for decreasing sequences).
- If $\emptyset \neq S \subseteq \mathbb{R}$ and $b_0 = \sup S$, then there is a sequence $x_n \in S$ such that $x_n \to b_0$. (You should be able to state and prove the corresponding result for the infimum).
- If x_n is a convergent sequence, then it must be Cauchy.
- If x_n is a Cauchy sequence, then it must be bounded.
- If $x_n \to L$, then for any subsequence x_{n_k}, $x_{n_k} \to L$.
- Every sequence has a monotonic subsequence.
- If x_n is a Cauchy sequence and a subsequence $x_{n_k} \to L$, then $x_n \to L$.
- If x_n is a Cauchy sequence, then it must converge.
- If x_n is a bounded sequence, then it has a convergent subsequence. [This is often called the Balzano-Weierstrass Theorem]