Assignment 1

1. You plan to spend the night at a hotel with infinitely many rooms. You are told that all the rooms are full. Why is it that they can put you up for the night anyway? Use complete sentences in your explanation.

2. a) You place 100 balls on the ground at 11:00AM and remove the first. You place 100 more balls on the ground at 11:30, and remove the second ball. You replace 100 more balls at 11:45, and remove the third ball. Etc. How many balls will be there at 12 noon? Use complete sentences in your explanation. b) What would happen if you instead removed the 101st ball at time 11:30, the 201st ball at 11:45, etc.?

3. 1.1: 8, 9, 10

4. 1.2: 1, 2, 4, 5, 7, 10
5. State the denials of the following statements (don’t just insert the words “It is not true that ...”)
 a) Either you take me for a fool, or you must be a fool yourself.
 b) He walked into my office this morning, told me a pack of lies, and punched me on the nose.
 c) If you are right, then I am wrong.
 d) You are right if and only if I am wrong.

Some pointers on the logical conventions of mathematics.

It is probably hardest to get used to the way mathematicians use the word “implies” or the symbol \rightarrow. The idea is that you want to know if the implication is true or not just on the basis of whether the ingredients are true or false without any more thinking.

- Any true statement \Rightarrow any true statement (e.g., $1 + 1 = 2 \Rightarrow$ there are infinitely many primes \Rightarrow Fermat’s last conjecture)
- Any false statement \Rightarrow any true statement (because, in particular, you want to be able to say that $1 = 2 \Rightarrow 1 \times 0 = 2 \times 0$ is a correct “deduction”).
- Any false statement \Rightarrow any false statement (because, in particular, you want to be able to say that $1 = 2 \Rightarrow 1 + 1 = 2 + 1$ is a correct “deduction”).
- The following is false: truth \Rightarrow false

1. The most common logical errors made by beginners:
 - They think that “or” is exclusive: thus although they know that \leq means “less than or equal to” they think it is “wrong” to write $3 \leq 3$ because they know that “actually, $3 = 3$”
 - They think that you cannot prove $P \Rightarrow Q$ if you already know that P is false.
 - They think that if $P \Rightarrow Q$ is true, then Q is true.
 - When asked to prove $P \Rightarrow Q$ they instead prove $Q \Rightarrow P$.
 - They get = (equality - say of numbers) mixed up with \Leftrightarrow (logical equivalence, used for propositions).

2. Some correct illustrations of logic:
 - The proposition “$6 < 7$ or $4 < 5$” is true.
 - The proposition “$1 = 2 \Rightarrow 0 \times 1 = 0 \times 2$” is true.
 - The proposition “For any real number x, $x + 2 = 3 \Rightarrow x(x + 2) = x3$” is true.
• The proposition “For any real number x, $x(x + 2) = x^3 \Rightarrow x + 2 = 3$” is false.

3. It is important to be able to take the negations of statements (in order to prove things by contradiction). Here is the general scheme (don’t worry about the last two at this point)

\[
\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \\
\neg (P \land Q) \iff (\neg P) \lor (\neg Q) \\
\neg (P \Rightarrow Q) \iff (P \land \neg Q) \\
\neg ((\forall x)P(x)) \iff (\exists x)(\neg P(x)) \\
\neg ((\exists x)P(x)) \iff (\forall x)(\neg P(x))
\]