Math 31b : Integration and Infinite Series
Midterm 1

1. Consider the function \(f(x) = xe^x \).
 (a) (5 points) Find the derivative \(f'(x) \).

 Solution. We use logarithmic differentiation. Since \(\ln f(x) = \ln(xe^x) = e^x \ln x \), we get
 \[
 \frac{f'(x)}{f(x)} = (\ln f(x))' = (e^x \ln x)' = \frac{e^x}{x} + e^x \ln x
 \]
 so
 \[
 f'(x) = \left(\frac{e^x}{x} + e^x \ln x\right)xe^x.
 \]

 (b) (5 points) Let \(g = f^{-1} \) denote the inverse function. Find \(g'(1) \).

 Solution. We have \(f(1) = 1 \), so \(f^{-1}(1) = 1 \) and
 \[
 g'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(1)} = \frac{1}{(e + 1 \cdot 0)1} = \frac{1}{e}.
 \]

2. We have a sample consisting of 100 grams of a radioactive isotope. After one year it decays to 90 grams.
 (a) (5 points) What is the half-life of the isotope?

 Solution. The quantity must satisfy the exponential decay law \(P(t) = P_0e^{-kt} \). We have
 \[
 P(1) = 100e^{-k} = 90
 \]
 so the growth constant \(k \) satisfies \(e^{-k} = 9/10 \), i.e. \(k = -\ln(9/10) \). The half-life is \(-\frac{\ln 2}{\ln(9/10)} \).

 (b) (5 points) After how many years will the sample decay to 30 grams?

 Solution.
 \[
 P(t) = 30 \implies 100e^{-kt} = 30 \implies -kt = \ln(3/10). \quad \text{Therefore } t = \frac{\ln(3/10)}{\ln(9/10)}.
 \]

3. A function \(f(x) \) satisfies the differential equation
 \[
 f'(x) + 4f(x) = 2.
 \]
 If \(f(0) = 1 \), what is \(f(1) \)?

 Solution. We can rewrite the equation as \(f' = -4(f - 1/2) \), with solution
 \[
 f(t) = \frac{1}{2} + Ce^{-4t}
 \]
 for some \(C \). From \(f(0) = 1 \) we get \(C = \frac{1}{2} \) and
 \[
 f(1) = \frac{1 + e^{-4}}{2}.
 \]
4. Calculate the following limits:
 (a) (5 points)
 \[
 \lim_{x \to \pi} \frac{e^{\sin x} - 1}{x - \pi}
 \]

 Solution. It is of the form 0/0. Using l'Hôpital we get
 \[
 \lim_{x \to \pi} \frac{e^{\sin x} - 1}{x - \pi} = \lim_{x \to \pi} \frac{(\cos x)e^{\sin x}}{1} = -1 \cdot e^0 = -1.
 \]

 (b) (5 points)
 \[
 \lim_{x \to 0^+} \frac{e^{-1/x^4}}{x}
 \]

 Solution. Substitute \(t = 1/x \). In terms of \(t \), the limit is
 \[
 \lim_{t \to \infty} te^{-t^4} = \lim_{t \to \infty} \frac{t}{e^{t^4}} = (\text{by l'Hôpital}) \lim_{t \to \infty} \frac{1}{4t^3e^{t^4}} = 0.
 \]

5. Calculate the definite integral:
 \[
 \int_0^{\sqrt{\frac{\pi}{4}}} x^3 \cos(2x^2) \, dx.
 \]

 Solution.
 Substitute \(2x^2 = u \) so \(4xdx = du \). We get
 \[
 \int_0^{\sqrt{\frac{\pi}{4}}} x^3 \cos(2x^2) \, dx = \int_0^{\pi/2} (u/2) \cos(u) \, \frac{du}{4} = \frac{1}{8} \int_0^{\pi/2} u \cos(u) \, du.
 \]
 Using integration by parts, the last expression equals
 \[
 \frac{1}{8} \left(u \sin(u) \right|_0^{\pi/2} - \int_0^{\pi/2} \sin(u) \, du \right) = \frac{1}{8} \left(\frac{\pi}{2} - 0 + \cos u \right|_0^{\pi/2} = \frac{1}{8} \left(\frac{\pi}{2} - 1 \right).
 \]