1. Prove that the sum of the interior angles of an \(n \)-sided convex polygon is \((n - 2)\) times 180 degrees. (4 pts)

2. For each of the following relations \(\sim \) on the given set \(X \) check if \(\sim \) is reflexive, symmetric and/or transitive. (2 pts each)

 a) \(X = \mathbb{R} \) and \(x \sim y \) if and only if \(x - y \) is an integer.

 b) \(X = \mathbb{R} \) and \(x \sim y \) if and only if \(x - y \) is a natural number.

 c) \(X = \mathbb{Z} \) and \(x \sim y \) if and only if \(xy > 0 \).

3. Show that for every positive integer \(n \), (at least) one of the numbers \(n, n + 1, \ldots, 2n \) is a perfect square (that is, a square of an integer). (5 pts)

4. Prove: If \(m \) is an integer that is a square of a rational number, then \(m \) is a square of an integer. (5 pts)