1. In this problem, $R = \mathbb{C}[G]$ is the group ring over the complex numbers of a finite group G. All modules will be left modules. As a hint for much of the problem, take another look at problem 3 from the 110AH take home final (can be found on the web page for that class, linked through my home page). (2 pts each)

a) Prove that R is both Noetherian and Artinian (left and right).

b) Let M be a finitely generated R-module. Prove that there is a unique (up to isomorphism) direct sum decomposition $M \cong \bigoplus_i Q_i$ into a sum of finitely many simple R-modules.

c) Suppose Q is a simple R-module. Show that Q is finitely generated.

d) Let P and Q be non-isomorphic simple R-modules. Show that $\text{Hom}_R(P, Q) = 0$ and that there is an isomorphism of rings $\mathbb{C} \cong \text{End}_R(Q)$.

e) Now let M and N be two finitely generated R-modules. Prove that $M \cong N$ if and only if M and N have the same (up to isomorphism) simple modules with the same multiplicities in their direct sum decomposition.

f) Given two finitely generated R-modules M and N, give a formula for $\dim_{\mathbb{C}}(\text{Hom}_R(M, N))$ in terms of the common simple summands in their respective direct sum decompositions.

g) Now let G be an abelian group. Show: if Q is a simple R-module, then the dimension of Q as a \mathbb{C}-vector space is 1.

2. In this problem, R is a commutative local ring with maximal ideal m and residue field $k = R/m$. (2 pts each)

a) Suppose M is a finitely generated R-module such that $mM = M$. Show that $M = 0$.

b) Show that for any R-module M, M/mM is a k-vector space. Then use a) to show: if M is a finitely generated R-module such that the k-vector space $M/m = 0$, then $M = 0$.

c) Now show that any finitely generated projective module P over R is a free module.