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This paper presents a simple yet powerful simulation-based approach for
approximating the values of prices and Greeks (ie, derivatives with respect
to the underlying spot prices, such as delta, gamma, etc) for American-style
options. This approach is primarily based upon the least squares Monte
Carlo (LSM) algorithm and is thus termed the modified LSM (MLSM)
algorithm. The key to this approach is that with initial asset prices randomly
generated from a carefully chosen distribution, we obtain a regression equa-
tion for the initial value function, which can be differentiated analytically
to generate estimates for the Greeks. Our approach is intuitive, easy to
apply, computationally efficient and, most importantly, provides a unified
framework for estimating risk sensitivities of the option price to underlying
spot prices. We demonstrate the effectiveness of this technique with a series
of increasingly complex but realistic examples.

1 INTRODUCTION

In the past years, Monte Carlo simulation has emerged as the most popular approach
in computational finance for determining the prices of American-style options.
Some important contributions are those of Tilley (1993), Carriere (1996), Broadie
and Glasserman (1997, 2004), Tsitsiklis and Van Roy (1999, 2001), Longstaff and
Schwartz (2001), Rogers (2002) and Andersen and Broadie (2004).

However, while calculating prices is one objective of Monte Carlo simulation
and tremendous progress has been made in this area, the accurate estimation of
Greeks via simulation remains an equally important but much more difficult task.
Therefore, Monte Carlo simulation plays a much more crucial role in the calculation
of price sensitivities. Both first- and second-order derivatives are essential for
hedging and risk analysis, and even higher order derivatives are sometimes used.

The authors would like to thank Professor Francis Longstaff for his helpful discussions and
comments throughout.
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They are known collectively as the “Greeks”. Important as it is, efficient calculation
of price sensitivities, especially for American-style options, continues to be among
the greatest practical challenges facing users of Monte Carlo methods in the deriva-
tives industry. Naturally enough, much attention has been focused on this area in
recent years.

As one of the efforts in this trend, we present a simple yet powerful new approach
to approximate the values of prices and Greeks for American-style options. Our new
approach is primarily based upon the well-known least squares Monte Carlo (LSM)
approach proposed by Longstaff and Schwartz (2001), which makes use of least
squares regression to estimate the conditional expected payout from continuation
at each exercise date. The idea for our modified LSM (MLSM) approach can be
seen as an natural application of the technique in Pelsser and Vorst (1994) to the
LSM algorithm, where the binomial tree was extended in a similar way in order to
obtain more accurate Greeks. The key insight is that, by generating random initial
prices for stock price sample paths, we can exploit the cross-sectional information
in the simulated paths at initial time to infer option value information over a range
of initial asset prices. This is done by roughly equating the option value function
with the additional conditional expectation function estimated at initial time. Simple
manipulation of this function immediately yields the desired estimates for price and
Greeks.

To illustrate this technique, we present a series of increasingly complex but real-
istic examples. Firstly, we value an American put option on a single asset. Secondly,
we value Bermudan max-call options on multiple underlying assets. This option
is a typical high-dimensional example and poses great computational challenges
to traditional finite-difference and binomial techniques. In the third example, we
consider an exotic American–Bermudan–Asian option. This option is more complex
than the previous ones since it is both path-dependent and has multifactor features.
In each of these cases, the MLSM approach is able to produce results that closely
approximate the benchmark values we provide. Finally, we value American options
on an asset that follows a jump-diffusion process. This option is not directly solvable
using standard partial differential equation or binomial techniques but poses little
difficulty for our MLSM algorithm.

A number of papers have addressed the issue of using Monte Carlo simulation
to estimate sensitivities for European options. Important examples of this literature
include Glynn (1989), Broadie and Glasserman (1996) and Fournié et al (1999).
Glasserman (2004, Chapter 7) provides an overview of these methods, which broadly
fall into two categories. The first category uses finite-difference approximations
and is superficially easier to understand and implement; the second uses infor-
mation about the simulated stochastic process to replace numerical differentiation
with exact differentiation. The pathwise derivative method and likelihood ratio
method belong to this second category, and are found to be computationally more
efficient and capable of providing more robust results than the finite-difference
approach.
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Recently, an important contribution was made by Piterbarg (2004, 2005) to extend
the pathwise method and likelihood method to handle Bermudan-style options.
The author finds that extension of the likelihood method is quite straightforward
and requires little extra effort; extension of the pathwise method turns out to be
much harder and constitutes the main theoretical result presented in the paper.
Another serious attempt at generalizing the methods in Glasserman (2004) to
handle Bermudan-style options was made by Kaniel et al (2007). Their algorithm
is based on a combination of the likelihood ratio method for calculating European
option sensitivities and the duality formulation for pricing Bermudan options, thus
termed the likelihood ratio and duality (LRD) algorithm. In the LRD algorithm the
Bermudan option is treated as a European option that expires on the first exercise
date of the Bermudan option. The likelihood ratio method is thus applied on this
European option while the duality method is used to approximate prices for the new
Bermudan option, which has one exercise date less.

Our work takes a fundamentally different approach by focusing directly on the
conditional expected function. We feel that our MLSM algorithm has a few attributes
that make it a promising candidate for estimating sensitivities in future practice. First,
it is intuitive and easy to apply, since nothing more than simple regression is required.
Second, it is computationally as efficient as the LSM algorithm, as it only involves
one extra regression being conducted at initial time. Third, it is readily applicable
to cases with complex price dynamics or arbitrary payout functions. To demonstrate
the generality of our approach, we have studied a series of increasingly complicated
examples in our paper. Fourth, it does not suffer the problem arising from increasing
the number of exercise dates as the likelihood method and LRD method experience.
It can be directly used to approximate Greeks for continuously exercisable options.
To further put the MLSM approach to the test, we have run a detailed performance
comparison with the pathwise method, likelihood ratio method and the LRD method
throughout this paper.

The remainder of this paper is organized as follows. Section 2 presents a simple
numerical example of the MLSM approach. Section 3 describes the valuation
framework and MLSM algorithm within a general theoretical setting. Sections 4–7
provide specific examples of application for this approach. Section 8 discusses a
number of numerical and implementation issues. Section 9 summarizes the results
and discusses some possible future directions.

2 A NUMERICAL EXAMPLE

Let us briefly restate the methodology for this MLSM approach. First we need to
generate a number of sample paths for the stock price process. However, instead
of fixing the initial prices at one point S0 as is required for implementation of the
LSM algorithm, here we “perturb” these initial prices by randomly generating them
from a carefully chosen distribution centered around S0. The entire sample paths
are thus constructed, and we apply the LSM algorithm recursively to these paths to
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FIGURE 1 A comparison of sample path generation for the LSM and MLSM
methods. (a) The LSM algorithm. (b) The MLSM algorithm.
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obtain the optimal stopping times for each path. Finally, at the initial point we obtain
a regression equation for the initial value function by regressing all the pathwise
discounted payouts on a set of basis functions of the initial prices. Amazingly, the
fitted values of this final regression provide a good approximation to the American
option value for a range of asset prices near S0, without having to perform a full
Monte Carlo simulation each time the asset price changes slightly. In particular, this
allows us to calculate the hedging parameters (in fact, any derivatives with respect
to stock price) directly through differentiating the resultant analytic expression.
Figure 1 clearly illustrates the difference between the LSM and MLSM algorithms
in terms of the way initial stock prices are generated.

Perhaps the best way to convey the intuition of this MLSM approach is through a
simple numerical example. Here we will just use the one in Longstaff and Schwartz
(2001). Consider a three-year American put option on a share of non-dividend-
paying stock that can be exercised at the end of year 1, year 2 and year 3. The current
stock price is 1.00 and the strike price is 1.10. The risk-free rate is 6% per annum
(continuously compounded). For simplicity, we illustrate the algorithm using only
eight sample paths for the price of the stock and the initial prices are produced from
a uniform distribution on [0.90, 1.10]. (This is for illustration only; in practice many
more paths would be sampled and other distributions could be used to generate initial
prices.) The entire sample paths are constructed in Table 1 (see page 99).

First, we apply the LSM method to these sample paths to obtain the optimal
stopping rule that maximizes the value of the option at each point along each path.
The LSM method is recursive in nature and we need to work backwards one step
at a time. Conditional on not exercising the option before the final expiration date
at time 3, the cashflows realized by the option holder at time 3 are given in Table 2
(see page 99).
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TABLE 1 Stock price paths.

Path t = 0 t = 1 t = 2 t = 3

1 1.05 1.09 1.08 1.34
2 1.07 1.16 1.26 1.54
3 1.02 1.22 1.07 1.03
4 0.99 0.93 0.97 0.92
5 1.01 1.11 1.56 1.52
6 0.91 0.76 0.77 0.90
7 1.00 0.92 0.84 1.01
8 0.95 0.88 1.22 1.34

TABLE 2 Cashflows if exercised only at time 3.

Path t = 1 t = 2 t = 3

1 – – 0.00
2 – – 0.00
3 – – 0.07
4 – – 0.18
5 – – 0.00
6 – – 0.20
7 – – 0.09
8 – – 0.00

If the put is in-the-money at time 2, the holder must decide whether or not to
exercise. There are only five paths for which the option is in-the-money at time 2.
We use only these in-the-money paths since it allows us to better estimate the
conditional expectation function.1 Let X denote the stock prices at time 2 and
Y the corresponding discounted cashflows from continuation. Our five observations
on X are 1.08, 1.07, 0.97, 0.77 and 0.84, and the corresponding values for Y
are 0.00 e−0.06×1, 0.07 e−0.06×1, 0.18 e−0.06×1, 0.20 e−0.06×1 and 0.09 e−0.06×1.
Regressing Y on a constant, X, and X2 yields the estimated conditional expectation
function: E[Y |X]=−1.070+ 2.983X − 1.813X2. In fact, this specification is one
of the simplest possible; more general specifications will be discussed later in the
paper.

With this conditional expectation function, we compare the value of immediate
exercise with the value from continuation to find that it is optimal to exercise the

1The reason for including only in-the-money paths in regression is primarily due to numerical
considerations. This is clearly explained and numerically backed up in Longstaff and Schwartz
(2001), “more than two or three times as many basis functions may be needed to obtain the same
level of accuracy as obtained by the estimator based on in-the-money paths”. Further, for cases
where the exercise value is not known immediately, this scheme of singling out in-the-money paths
would fail and more specialized techniques need to be designed accordingly.
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TABLE 3 Cashflows if exercised only at times 2 and 3.

Path t = 1 t = 2 t = 3

1 — 0.00 0.00
2 — 0.00 0.00
3 — 0.00 0.07
4 — 0.13 0.00
5 — 0.00 0.00
6 — 0.33 0.00
7 — 0.26 0.00
8 — 0.00 0.00

TABLE 4 (a) Cashflows from the option; (b) option values at time 0.

(a) (b)

Path t = 1 t = 2 t = 3 Path t = 0

1 0.00 0.00 0.00 1 0.02
2 0.00 0.00 0.00 2 0.00
3 0.00 0.00 0.07 3 0.07
4 0.17 0.00 0.00 4 0.13
5 0.00 0.00 0.00 5 0.09
6 0.34 0.00 0.00 6 0.33
7 0.18 0.00 0.00 7 0.11
8 0.22 0.00 0.00 8 0.23

option at time 2 for paths 4, 6 and 7. This leads us to the matrix in Table 3, which
shows the cashflows received by the option holder conditional on not exercising prior
to time 2.

Proceeding recursively, we next consider the paths that are in-the-money at time 1.
These are paths 1, 4, 6, 7 and 8. Similarly, X represents the stock price at time 1
and Y the discounted value of subsequent option cashflows. The values of X for
the paths are 1.09, 0.93, 0.76 and 0.92, and the corresponding values of Y are
0.00 e−0.06×1, 0.13 e−0.06×1, 0.33 e−0.06×1, 0.26 e−0.06×1 and 0.00 e−0.06×1. Again
linear regression gives us the estimated conditional expectation function:E[Y |X]=
2.038− 3.335X + 1.356X2.

This gives the value of continuing at time 1 for paths 1, 4, 6, 7 and 8 as 0.0139,
0.1092, 0.2866, 0.1175 and 0.1533, respectively. The value of immediate exercise
is 0.01, 0.17, 0.34, 0.18 and 0.22. This means that we should exercise at time 1 for
paths 4, 6, 7 and 8. Table 4(a) summarizes the cashflows assuming that early exercise
is possible at all three times.

Having identified the cashflows generated by the American put at each date along
each path, we can estimate the option value as a function of initial stock prices by
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conducting a linear regression at time 0. For this we consider all the simulated paths
(this time all the paths should be relevant for the regression2), and define X as initial
stock prices for each path and Y the corresponding discounted payouts. Our eight
observations onX are 1.05, 1.07, 1.02, 0.99, 1.01, 0.91, 1.00 and 0.95, and the values
of Y are 0.00 e−0.06×1, 0.00 e−0.06×1, 0.07 e−0.06×3, 0.17 e−0.06×1, 0.00 e−0.06×1,
0.34 e−0.06×1, 0.18 e−0.06×1 and 0.22 e−0.06×1. Finally, regressing Y on a constant,
X, and X2 results in our desired option value function:

Y = 6.3828− 10.5129X + 4.2437X2 (1)

Thus we can substitute the values of X into (1) to produce a table of estimates
for option values at these initial prices, as shown in Table 4(b). Furthermore, this
expression (1) provides us with a rough approximation to the option value for
a continuous range of initial asset prices near S0 (=1.00). With this analytical
expression at hand, it is easy to calculate any derivatives with respect to asset
price. Y (S0), Y ′(S0) and Y ′′(S0) would immediately yield estimates for the price,
� and 	.

Since only eight sample paths are used here, the results provided above are by no
means meant to accurately represent the true values. However, this simple example
illustrates how least squares can use the cross-sectional information to estimate the
conditional expected payout function as well as the initial value function. Like the
original LSM algorithm, this MLSM algorithm is easily implemented since nothing
more than simple regression is involved.

3 THE GENERAL MLSM ALGORITHM

In this section, we describe the general valuation framework and MLSM algorithm
within a generic theoretical setting. We also discuss some related implementation
issues and finally present a convergence result for the algorithm.

3.1 Valuation framework

The first step in implementing any numerical algorithm to price an American option
is to assume that time can be discretized. Thus, we will assume that the derivative
expires in L periods, and specify the exercise points as t0 = 0< t1 ≤ t2 ≤ · · · ≤
tL = T . In practice, of course, many American options are continuously exercisable;

2It should be noted that there is a fundamental difference between the regression at intermediate
times and the regression at initial time. At intermediate times, we use only in-the-money paths for
regression since we are interested in estimating the expectation conditional on the event that the
option is in-the-money, in which case the comparison of exercise and continuation is relevant. At
initial time, we use all the paths for regression because we are trying to estimate the option value
function for all stock prices. In this case the comparison becomes irrelevant and hence there is no
need for conditioning on the event that the option is in-the-money.
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the MLSM algorithm can still be applied to these options by taking L to be
sufficiently large.

We assume a complete probability space (�,F , P ) equipped with a discrete
filtration (F(tk))Lk=0. The underlying model is assumed to be Markovian, with state
variables (X(ω, tk))Lk=0 adapted to (F(tk))Lk=0. We denote by (Z(ω, tk))Lk=0 an
adapted payout process for the derivative, satisfying Z(ω, tk)= h(X(ω, tk), tk), for
a suitable function h(·, ·). As an example, consider the American put option from
above, for which the only state variable of interest is the stock price, X(ω, tk)=
S(ω, tk). We have that Z(ω, tk)=max(K − S(ω, tk), 0).3

Here it is important to notice that in the LSM algorithm, X(ω, tk) ∈F(tk),
k = 0, 1, . . . , L, and since X(ω, 0)= S0 is deterministic, F(0) is just a trivial
σ -algebra. However, in our “modified” LSM algorithm, we make an important
“modification”, that is, we randomly generate X(ω, 0) from some predetermined
distribution X0(ω) (ie, X(ω, 0)=X0(ω)) and hence turn F(0) into a non-trivial
σ -algebra.4

From the payout function Z(ω, t), we can define the function C(ω, τ̃ (tk))=
e−r(τ̃ (tk)−tk)Z(ω, τ̃ (tk)) as the cashflow generated by the option, discounted back
to tk and conditional on no exercise prior to time tk and on following a stopping
strategy from tk to expiration, written as τ̃ (tk) (essentially this corresponds to the
C(ω, s; tk, T ) function from Longstaff and Schwartz (2001) defined in terms of
stopping times). With this formulation we can specify the initial value function as:

V (X, 0)= max
τ̃ (0)∈T (0)

E[C(ω, τ̃ (0)) |X(ω, 0)] (2)

where the maximization is over stopping times τ̃ (0) ∈ T (0), with T (tk) denoting
the set of all stopping times with values in {tk, . . . , tK}. Here we suppress the
randomness “ω” in the left-hand side. As we will see later, (2) is crucial to the
formation of our MLSM algorithm.

3.2 The MLSM algorithm

Problems such as (2) are referred to as discrete time optimal stopping time problems
and the preferred way to solve them is to use the dynamic programming principle.
For the American option problem this can be written in terms of the optimal stopping

3Note that in some cases it might not be possible to determine the exercise value Z(ω, tk)
analytically. Therefore, we cannot focus on in-the-money paths when conducting the regressions.
Consider an example where we have the option to enter into a (European) Asian option, in a model
where an Asian option cannot be valued easily in closed form. We thank the referee for presenting
such an example to elaborate this point.
4We are grateful to Professor Francis Longstaff for pointing out that this could be interpreted as
starting the stock price process from some time before 0.
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times τ(tk) as follows:
τ(tL)= T
τ(tk)= tk1{Z(ω,tk)≥E[C(ω,τ(tk+1)) |X(ω,tk)]}

+ τ(tk+1)1{Z(ω,tk)<E[C(ω,τ(tk+1)) |X(ω,tk)]}, k ≤ L− 1

(3)

Thus the initial value function in (2) can be expressed in terms of the optimal
stopping times in (3) as:

V (X, 0)=max(F (ω, 0), Z(ω, 0)) (4)

where F(ω, tk)= E[C(ω, τ(tk+1)) |X(ω, tk)] following the notation in Longstaff
and Schwartz (2001), which represents the expected payout from continuation at
time tk . Intuitively (4) makes sense because the option value at time 0 should be equal
to the maximum of two things: the expected payout from continuation at time 0 and
the payout from immediate exercise at time 0. By further restricting our attention
to initial price regions where it is optimal to keep the option alive at time 0 (ie,
F(ω, 0)≥ Z(ω, 0)), 5 formula (4) reduces to:

V (X, 0)= F(ω, 0) (5)

The key contribution of Longstaff and Schwartz (2001) is that they provide a
particularly useful method to approximate the conditional expectations (F(ω, tk),
k = 0, 1, . . . , L− 1) by using least squares regression. The theory on Hilbert spaces
tells us that any function belonging to this space can be represented as a countable
linear combination of basis vectors for the space. In particular, assuming that
F(ω, tk) belongs to Hilbert space, ie, is squarely integrable, we can write:

F(ω, tk)=
∞∑
m=0

φm(X(ω, tk))am(tk) (6)

where {φm(·)}∞m=0 form a set of basis functions.
However, the coefficients {am(tk)} in (6) are generally not known. Longstaff and

Schwartz (2001) suggest in their algorithm a procedure for approximating {am(tk)}
and thus F(ω, tk) using the first M basis functions and N sample paths for stock
price with F̂ NM (ω, tk) defined by:

F̂ NM (ω, tk)=
M−1∑
m=0

φm(X(ω, tk))â
N
m (tk) (7)

5This is a reasonable adjustment to make since, for most options we deal with in practice, we are
only interested in stock price regions where it is optimal not to exercise the option at initial time.
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The algorithm is recursive, and at each point in time tk the coefficients {âNm (tk)}M−1
m=0

are calculated as the solution to the following least squares minimization problem:

min
{âNm }M−1

m=0

N∑
n=1

(âN0 φ0(X(ωn, tk))+ · · · + âNM−1φM−1(X(ωn, tk))

− e−r(tk+1−tk)C(ωn, τ̂NM(tk+1)))
2 (8)

Eventually this procedure would give us {âNm (0)}M−1
m=0 and F̂ NM (ω, 0). Thus a natural

approximation to the initial value function, in analogy to (5), can be designated as:

V (X, 0)
.= F̂ NM (ω, 0)=

M−1∑
m=0

φm(X)â
N
m (0) (9)

The equation above tells us that the initial value function can be approximated
by the conditional expected payout from continuation at time 0. This, we believe,
is the essence of our MLSM algorithm. Compared to the original LSM algorithm,
which evaluates the option value at only one point S0, Equation (9) turns out to
be a significant step forward because it provides us with a direct estimation of the
option values for a continuous range of stock prices near S0. In particular, we obtain
V (S0, 0) simply by taking X to be S0 in (9):

V (S0, 0)
.=
M−1∑
m=0

φm(S0)â
N
m (0) (10)

Equally important hedging parameters, such as � and 	, are immediately produced
by analytically differentiating the expression:

�(S0, 0)= ∂V
∂X
(S0, 0)

.=
M−1∑
m=0

φ′m(S0)â
N
m (0) (11)

	(S0, 0)= ∂
2V

∂X2
(S0, 0)

.=
M−1∑
m=0

φ′′m(S0)â
N
m (0) (12)

3.3 Initial distribution and convergence result

The concrete distribution X0(ω) needs to be specified first for the initial prices to
be generated. We have conducted a few experiments to investigate the relationship
between initial distribution and the corresponding results, and we find that the
results seem to be very robust to the choice of initial distribution. Specifically, for
consistency and simplicity, we fix the initial distribution for all our examples to be:

X(ω, 0)= S0 eασ
√
T ω, ω ∼N(0, 1) (13)
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where σ and T are the corresponding stock volatility and time to expiration, and
α could be used to adjust the variance of the distribution. The median of (13) is
S0 and it mimics the distribution for the underlying stock. One obvious advantage
of this specification is that it allows the distribution to vary accordingly as problem
parameters change and excludes extreme cases that might arise had the distribution
been kept fixed.6 As repeated numerical experiments show, fixing α to be near
0.5 works reasonably well for all examples in this paper. Our experiments further
show that too big or too small a value for α would lead to magnified variance and
inaccuracy of the results.

However, it is worth noting that the initial distribution need not be random;
a deterministic grid, spaced closely around the true initial value, would probably
exhibit a comparable performance. One good candidate for such a deterministic grid
is an evenly dispersed grid (with equal weights) over the interval:

(S(0) e−ασ
√
T , S(0) eασ

√
T )

where, once again, α is the parameter that could be used to vary the width of the grid.
To further put it to test, we run a comparison between the results from an evenly
dispersed grid and the ones from the random distribution (13). We found that the
even grid would usually do as good a job in estimating the values as the random
distribution, but tends to display a consistently bigger standard error. The results are
presented in detail in Appendix A. Given the difference in producing standard errors
displayed in these results, we recommend using a random distribution for generating
starting points in future practice.

While the ultimate test of the MLSM algorithm is how well it performs on a set of
realistic examples, it is also useful to examine what can be said about the theoretical
convergence of the algorithm to the true option value function V (X, 0). Fortunately,
this topic has been extensively discussed by Stentoft (2004a, b), where the author
has proved for the LSM algorithm the convergence in probability of the conditional
expectation function F̂ NM (ω, tk) to the true function F(ω, tk) under some general
assumptions. This result answers virtually every question about the convergence of
the MLSM algorithm, and we cite it below:

THEOREM 1 Under Assumptions 1, 2 and 3,7 if M increases as N increases such
thatM→∞ andM3/N→ 0, then F̂ NM (ω, tk) converges to F(ω, tk) in probability,

6As an example, consider an American option with a short maturity, on an asset with low volatility.
If the initial distribution had been unchanged for all cases, the continuation values at future time
steps would be estimated on too widely dispersed sample points, leading to less accurate results.
However, (13) will generate a reasonable distribution for this case that is relatively concentrated
near S0.
7Refer to Stentoft (2004a, b) for details of these assumptions. Basically these are regularity and
integrability assumptions on the conditional expectation functions to ensure convergence in the
result.
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for k = 0, 1, . . . , L− 1, ie, for any ε > 0:

Pr(|F̂ NM (ω, tk)− F(ω, tk)|> ε)−→ 0 (14)

This theorem states that in the limit F̂ NM (ω, 0) converges to F(ω, 0), which
is again equal to the true option value function V (X, 0) in stock price regions
where early exercise at time 0 is not optimal. Finally, this justifies the validity of
formula (12), the foundation on which all of our calculations in this paper are made.
Although it is required that bothM and N increase to infinity for convergence of the
algorithm, it turns out that a very small value forM would suffice for most cases in
practice. For one-dimensional problems,M = 5 basis functions prove to be sufficient
for a satisfactory level of accuracy.

4 AMERICAN PUT OPTION ON A SINGLE ASSET

Earlier in the second chapter we used a stylized example to illustrate how this
approach could be applied to a standard American put option. In this section we
present an in-depth example of the application of the MLSM algorithm to American
put options.

Assume that we are interested in pricing an American-style put option on a single
share of stock, whose risk-neutral process follows a geometric Brownian motion
process:

dS = rS dt + σS dZ (15)

where r and σ are constants, Z is a standard Brownian motion and the stock does
not pay dividends. Furthermore, assume that the option is continuously exercisable
at a strike price K up to and including the final expiration date T of the option.
No closed-form solution for the price and hedging parameters is known, but there
are various existing numerical methods that give good approximations very rapidly,
such as the well-known binomial/trinomial tree method, the finite-difference scheme
for partial differential equations, etc.

In applying our MLSM approach, we use as the set of basis functions a constant
and the first four power polynomials X, X2, X3, X4. For the initial distribution of
X(ω, 0), we use the specification in (16), with the value of α set to be 0.5. Once
the coefficients {âNm (0)}4m=0 are calculated, we can approximate the option value
function as:

V (X, 0)
.= âN0 (0)+ âN1 (0)X + âN2 (0)X2 + âN3 (0)X3 + âN4 (0)X4 (16)

Direct substitution and differentiation would yield estimates for price, � and 	:

V (S0, 0)
.= âN0 (0)+ âN1 (0)S0 + âN2 (0)S2

0 + âN3 (0)S3
0 + âN4 (0)S4

0 (17)

�(S0, 0)
.= âN1 (0)+ 2âN2 (0)S0 + 3âN3 (0)S

2
0 + 4âN4 (0)S

3
0 (18)

	(S0, 0)
.= 2âN2 (0)+ 6âN3 (0)S0 + 12âN4 (0)S

2
0 (19)
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It is straightforward to add additional basis functions as explanatory variables in the
regression if needed. Using more than five basis functions, however, causes little
change to the numerical results; five basis functions are adequate to obtain effective
convergence of the algorithm in this example.

To test the performance of the MLSM method, we compare our results of option
prices and Greeks calculated from the MLSM method with the benchmark results,
which in this case are produced by the standard binomial model with N = 10,000
time steps. To further compare the MLSM method with other existing simulation-
based methods for computing Greeks, we also report estimates of deltas from the
pathwise derivative method and the likelihood ratio method as well as estimates of
gammas from the likelihood ratio method.8 They are labeled as “MLSM”, “Bino-
mial”, “Pathwise” and “Likelihood” values respectively in Table 5 (see page 108).
All simulation estimates are based on 150,000 sample paths for stock price process
with 150 discretization points per year. Each estimate comes with a standard error,
which is computed by independently running the procedure 15 times, and this is
given in the parentheses immediately below.

As shown, the differences between “MLSM”, “Pathwise” and benchmark results
are quite small. The MLSM method generally performs equally as well as the path-
wise method in estimating the deltas and their standard deviations. The likelihood
method tends to exhibit much poorer results in that the “Likelihood” estimates
usually have a much larger variance. The standard errors for the “MLSM” price,
� and 	, results are very small, usually accounting for less than 1% in proportion
to the simulated values. All the benchmark results reported in Table 5 are within
one standard error of the “MLSM” ones. In summary, these results suggest that
the MLSM algorithm is able to approximate closely the binomial benchmark
values.

4.1 LSM versus MLSM

Before ending the discussion of this section, we propose one more interesting diag-
nostic test between the LSM and MLSM methods by comparing their performances
in computing the option prices for the same problem. Since both the LSM and MLSM
methods can be used to calculate American option prices, we apply both algorithms
to the same example with all parameters being identical.

To make the comparison more meaningful, a constant and the first four power
polynomials are selected as common basis functions for both algorithms. The
comparison of results and other implementation details are presented in Table 6 (see
page 109). The simulations for the two algorithms are both based on 200,000 sample

8It is generally inapplicable to apply the pathwise method to estimating second derivatives for many
important types of options due to the requirement of continuity in the discounted payout. Refer
to Glasserman (2004) for a detailed explanation of this point. For this reason, we skip reporting
estimates of gammas from the pathwise method for all examples in this paper.
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TABLE 6 American put option prices: LSM versus MLSM.

K σ T LSM price (s.e.) MLSM price (s.e.) Binomial price

35 0.2 1/3 0.2012 (0.0021) 0.1991 (0.0026) 0.2004
35 0.2 7/12 0.4338 (0.0041) 0.4301 (0.0031) 0.4328
40 0.2 1/3 1.5806 (0.0073) 1.5786 (0.0071) 1.5798
40 0.2 7/12 1.9915 (0.0087) 1.9848 (0.0086) 1.9904
45 0.2 1/3 5.0909 (0.0048) 5.0942 (0.0073) 5.0883
45 0.2 7/12 5.2645 (0.0078) 5.2722 (0.0056) 5.2670
35 0.3 1/3 0.6995 (0.0049) 0.6972 (0.0059) 0.6975
35 0.3 7/12 1.2227 (0.0066) 1.2229 (0.0048) 1.2198
40 0.3 1/3 2.4846 (0.0109) 2.4808 (0.0090) 2.4825
40 0.3 7/12 3.1675 (0.0103) 3.1678 (0.0132) 3.1696
45 0.3 1/3 5.7034 (0.0146) 5.7012 (0.0152) 5.7056
45 0.3 7/12 6.2426 (0.0182) 6.2318 (0.0111) 6.2436
35 0.4 1/3 1.3483 (0.0073) 1.3455 (0.0103) 1.3460
35 0.4 7/12 2.1534 (0.0119) 2.1522 (0.0072) 2.1549
40 0.4 1/3 3.3906 (0.0120) 3.3840 (0.0182) 3.3874
40 0.4 7/12 4.3527 (0.0147) 4.3505 (0.0208) 4.3526
45 0.4 1/3 6.5125 (0.0122) 6.5119 (0.0112) 6.5099
45 0.4 7/12 7.3856 (0.0146) 7.3780 (0.0181) 7.3830

This table presents a comparison of price estimates for the American put option using both the
LSM and MLSM algorithm. The first three columns represent different values for the parameters
K, σ and T , and the other fixed parameters are S0 = 40, r = 4.88%. The simulations are all based
on 200,000 sample paths for the stock-price process with 150 discretization points per year. Their
respective standard errors are given in the parentheses immediately to the right. The “Binomial
price” column shows the benchmark results for corresponding values from the standard binomial
model with N = 10,000 time steps. All benchmark results are within one standard error of the
simulated ones.

paths for the stock-price process with 150 discretization points per year. Again,
each standard error in the table is computed by independently running the procedure
15 times.

As clearly shown in Table 6, the differences between the two algorithms in terms
of computing option prices as well as their standard deviations are very slight. Both
algorithms can be used to closely approximate the values of American options. It is
thus safe to conclude that there is no need to run the LSM algorithm separately for
prices and then the MLSM algorithm for Greeks in the same problem. We suggest
that the MLSM algorithm be run only once to obtain price estimates as a by-product
for any future application.

5 BERMUDAN OPTIONS ON MULTIPLE ASSETS

Like a typical simulation-based approach, the MLSM method is readily applicable
in path-dependent and multifactor situations (particularly with five or more assets)
where traditional lattice techniques usually suffer from serious numerical constraints.
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In this section, we test its performance on the pricing of multi-asset equity options.
Specifically, we price max-call equity options, a problem that has become a standard
test case in the literature.

The payout of a max-call option at time t is equal to:

(max(S1(t), . . . , Sn(t))−K)+ (20)

We denote S(t)= (S1(t), . . . , Sn(t)) and assume that the risk-neutral dynamics for
these n underlying assets follow correlated geometric Brownian motion processes:

dSi = (r − δi)Si dt + σiSi dZi (21)

where Zi, i = 1, . . . , n, are standard Brownian motion processes, and the instan-
taneous correlation of Zi and Zj is ρij . For simplicity, in our numerical results
we take δi = δ, σi = σ and ρij = ρ for all i, j = 1, . . . , n and i �= j . The interest
rate r is also assumed to be constant. Exercise opportunities are equally spaced at
times ti = iT /d, i = 0, 1, . . . , d. We test our MLSM method for n= 2, 3, 5, and the
results are given in Tables 7 and 8 (see pages 111 and 113). The benchmark results
are chosen to be the values produced from the classical multidimensional binomial
routine by Boyle et al (1989).

It is not hard to determine which basis functions to use for regression at
intermediate time steps. For all three cases n= 2, 3, 5, we choose the set of basis
functions to consist of a constant, the first five power polynomials in the highest
price, the values and squares of values of the second through nth highest prices, the
product of highest and second highest, second highest and third highest, etc, and
finally, the product of all assets.

However, for higher-dimensional cases the choice of initial distribution and
basis functions for regression at time 0 turns out to be a much more complicated
issue than the previous one-dimensional case, and thus needs to be handled with
care and treated differently. For n= 2 and 3, we report our results for three
representative hedging parameters, �1 (=∂V /∂S1(0)), 	11 (=∂2V /∂S1(0)2) and
	12 (=∂2V /∂S1(0)S2(0)). When calculating �1 and 	11, we sample only S1(0)
from the specification in (16) while keeping other Si(0) fixed at S0. For regression
at time 0, we regress pathwise discounted payouts on a constant and the first
four power polynomials of S1(0), and then differentiate the approximated function
once and twice, respectively, to get estimates for �1 and 	11. However, when it
comes to calculating 	12, we sample both S1(0) and S2(0) from (16), and regress
pathwise discounted payouts on a set of basis functions in S1(0) and S2(0) –
a constant, the first four power polynomials of S1(0) and S2(0), their product,
two terms of degree three (S2

1(0)S2(0), S1(0)S2
2(0)) and three terms of degree four

(S3
1(0)S2(0), S2

1(0)S
2
2(0), S1(0)S3

2(0)). Then the estimate for 	12 is obtained by
differentiating the approximated function with respect to both S1(0) and S2(0).

As shown in Table 7 (see pages 111–112), the pathwise method tends to exhibit
a persistently smaller standard error in reporting � than the MLSM and likelihood
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method. Further, in this example the likelihood estimates do not suffer from huge
variance as we might expect since there are three exercise opportunities. Other than
these minor discrepancies, the differences between the “MLSM”, “Pathwise” and
“Likelihood” estimates are quite small. From these results we conclude that the
MLSM algorithm is able to approximate the benchmark values to a satisfactory level
even for higher-dimensional cases.

As we stated in the first section, we now compare our MLSM algorithm with the
LRD algorithm for the case of n= 5 underlying assets. 95% confidence intervals
for price, �1, 	11 are reported in Table 8. In applying the MLSM method, we
sample only S1(0) from (16) while keeping the other Si(0) fixed at S0 and, at the
end, regress pathwise payouts on a constant and the first four power polynomials
of S1(0). Due to the exponential computational complexity involved with traditional
lattice methods, the LRD confidence intervals are provided here as an alternative
comparison. Since the LRD algorithm treats the Bermudan option as a European
option that expires on the first exercise date, its results are expected to deteriorate and
have greater discrepancies as the number of exercise dates increases. This is rather
clear from Table 8, where we report the values for a series of increasing exercise
opportunities. It is also readily inferred from Table 8 that the MLSM algorithm
dominates the LRD algorithm in that its performance remains relatively stable for
various numbers of exercise dates.

6 AMERICAN–BERMUDAN–ASIAN OPTION

In this section we apply the MLSM algorithm to a more exotic path-dependent
option. In particular, we consider a call option on the average price of a stock over
some horizon, where the call option can be exercised at any time after some initial
lockout period. Thus this option is an Asian option since it is an option on an average,
and has both a Bermudan and American exercise feature. This is one of the examples
studied by Longstaff and Schwartz (2001), of an American–Bermudan–Asian option,
specified as follows.

Define the current valuation date as time 0. We assume that the option has a
final expiration date of T = 2, and that the option can be exercised at any time
after t∗ = 0.25 by payment of the strike priceK . The underlying average At, 0.25≤
t ≤ T , is the continuous arithmetic average of the underlying stock price during the
period t0 =−0.25 to time t :9

At =
∫ t
−0.25 Su du

t + 0.25
, 0.25≤ t ≤ T (22)

Thus the cashflow from exercising the option at time t is max(At −K, 0). The risk-
neutral dynamics for the stock price are the same as in (18).

9Note that t∗ = 0.25 and t0 =−0.25 represent different times and should not be confused with
each other.
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In Table 8, we report our results for price, � (=(∂V /∂S(0))(S0, A0, 0)) and
	 (=(∂2V /∂S(0)2)(S0, A0, 0)). For regression at intermediate times, we use a total
of eight basis functions: a constant, the first two power polynomials in the stock price
and the average stock price, and the cross products of these power polynomials up
to third-order terms. At time 0, we again sample S(0) from (16) while keeping A(0)
fixed at A0 and, in the final regression, regress pathwise payouts on a constant and
the first four power polynomials in S(0). Thus the desired estimates are obtained by
substituting and differentiating the approximated function accordingly.

To provide a benchmark result in this case, we resort to the standard finite-
difference techniques for solving the partial differential equation that models the
option. In general, this type of problem is very difficult to solve by finite-difference
techniques since the cashflow from exercise depends on the past stock price over the
averaging window. However, in this particular case, we can transform the problem
from a path-dependent one to a Markovian problem by introducing the average
to date At as a second state variable in the problem. Consequently, the option
price V (S, A, t) is the solution to the following two-dimensional partial differential
equation:

(σ 2S2/2)VSS + rVS + 1

0.25+ t (S − A)VA − rV + Vt = 0 (23)

along with the early exercise constraint:

V (S, A, t)≥max(A−K, 0), 0.25≤ t ≤ T (24)

subject to the expiration condition V (S, A, T )=max(A−K, 0). Note that the path
dependence of the option payout does not pose any difficulties to the simulation-
based MLSM algorithm.

As shown in Table 9 (see page 116), the pathwise method again tends to
exhibit a persistently smaller standard error in reporting �, while the likelihood
method suffers from a much bigger standard error for both � and 	 due to the
large number of exercise dates used. In contrast, the MLSM method is relatively
stable for the results throughout the table. The simulation estimates are typically
within two standard errors of the finite-difference benchmark values. This is a good
indication that the MLSM algorithm can also be effective in closely approximating
the benchmark values for an exotic path-dependent problem.

7 AMERICAN PUT OPTION IN A JUMP-DIFFUSION MODEL

In this section, we illustrate how the MLSM approach can be applied to American
options when the underlying asset follows a jump-diffusion process. In particular,
we revisit the American put option considered in Section 6.

To simplify the illustration, we focus on the basic jump-to-ruin model presented in
Merton (1976). In this model, the stock price follows a geometric Brownian motion
as in (18) until a Poisson event occurs, at which point the stock price becomes zero.
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Pricing and hedging American-style options 117

The resultant risk-neutral dynamics are given by:

dS = (r + λ)S dt + σS dZ − S dq (25)

where q is an independent Poisson process with intensity λ. When a Poisson event
occurs, the value of q jumps from zero to one, implying that dq = 1, and the stock
price jumps downward from S to zero. Merton (1976) shows that the price of an
American option in such a model is given by a complex mixed differential-difference
equation, which is difficult to solve. As usual, this does not pose any difficulty to the
simulation-based MLSM approach and, furthermore, the MLSM approach can be
readily applied to much more complex jump-diffusion processes than in this example
or the other examples in Merton.

To put the results into perspective, we compare the prices of the American put
option for the cases where there is no possibility of a jump λ= 0 and when a jump
can occur with intensity λ= 0.05. To make the comparison more meaningful, we
adjust the parameters in the two cases so that the means and variances are equal.
Because of the martingale restriction implied by the risk-neutral framework, the
mean of the risk-neutral distribution for stock price is S0 exp(rT ) and it is the same
across cases. The variance of the stock price is:

S2
0 exp(2r)(exp((λ+ σ 2)T )− 1) (26)

Therefore, in order to equalize their first two moments, we set the parameter
values to be λ= 0, σ = 0.3 and λ= 0.05, σ = 0.2. Other parameters being identical,
a comparison of prices for the two cases is presented in Table 9 on page 116. To
provide an additional comparison, we also report estimates for � from the pathwise
method; however, it is in general quite difficult to apply the likelihood approach here
as this example fails to have a closed-form density function for the underlying asset
price. All simulations are based on 150,000 sample paths with 100 discretization
points per year. Longstaff and Schwartz (2001) points out that the value of early
exercise premium is typically less in the “jump” case where λ= 0.05, σ = 0.2, so
there is less incentive to keep the option alive. They explain that this is because “the
windfall gain to the option holder from a jump does not offset the effects of a lower
diffusion coefficient λ”.

As with the other examples, we provide a benchmark for the MLSM values to
demonstrate the effectiveness of our MLSM algorithm. Among the many established
techniques available in the literature, we adopt the generalized binomial model
for jump-diffusion processes proposed by Amin (1993) to produce the desired
benchmark values. These values are also reported in Table 10 (see page 118) and
closely approximated by the corresponding MLSM values as expected.

8 NUMERICAL AND IMPLEMENTATION ISSUES

In this section, we discuss in detail a number of numerical and implementation issues
that are associated with the MLSM algorithm. These are divided into three major
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categories and discussed individually below. Much like its successful predecessor,
the LSM method, the MLSM method shares virtually all the good qualities that the
LSM method possesses.

8.1 Choice of basis functions

Extensive numerical tests indicate that the results from the MLSM algorithm are
remarkably robust to the choice of basis functions. For instance, we use the first four
power polynomials as basis functions in the American put example in Section 6.
We obtain results that are virtually identical to those reported in Table 5 when we
use the first four Laguerre polynomials as basis functions, when we use the first
four Hermite polynomials as basis functions or when we use four trigonometric
functions as basis functions.10 This is also true for all the other examples presented in
this paper.

Here we point out that the MLSM algorithm is primarily intended to calculate
option price derivatives that are more sensitive to the approximated option value
function than the option prices themselves. Therefore, we recommend using one or
two more basis functions in implementing the MLSM method than would usually be
necessary in implementing the LSM method to allow for a better approximation of
the option value function. For example, Longstaff and Schwartz (2001) report that,
in applying the LSM method to the American put example, using only the first three
polynomials would be sufficient, while we choose to use the first four polynomials
in applying the MLSM method.

We also recommend normalizing appropriately to avoid potential numerical errors
resulting from scaling problems. This is because for certain types of polynomials,
such as weighted Laguerre polynomials, directly applying them to the problems
could result in a scaling mismatch, further leading to computational underflows. To
avoid this problem, we renormalize the regressions by dividing all the cashflows
and prices by the strike price, and estimating the conditional expectation function
in the renormalized space; all of the results reported in this paper are based on this
renormalization.

8.2 Choice of initial distribution

As we have argued in Section 5, the conditional expectation we are trying to estimate,
F(ω, 0)= E[C(ω, τ(t1)) |X(ω, 0)], is actually a deterministic function of X, and
should be independent of the distribution for X(ω, 0) we use in the regression. For
concerns on simplicity and consistency, we reuse the initial distribution specified
in (16) for all of our examples in this paper. Extensive experiments show that a range
of values for α from (0.1, 1) all do very well in producing a reasonably satisfactory

10A detailed illustration and comparison of these different basis functions can be found in Moreno
and Navas (2003).
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120 Y. Wang and R. Caflisch

result based on a sufficiently large sample of stock price paths. However, significant
biases in the results do arise when too small or too large a value for α is chosen. We
believe this is because too small a value for α would produce a layout of initial prices
too concentrated near S0 and hence do a poor job in extracting the information of a
neighborhood of S0 for evaluation of the price sensitivities; meanwhile, too large a
value for α would cause the initial prices to spread out excessively, thus undermining
the resolution of the final regression.

8.3 Computational speed

First, we point out that the MLSM method differs little from the LSM method in
terms of computational cost and speed, or we could say that the MLSM method is
as fast as the LSM method. For example, in applying the LSM method, suppose we
use 10,000 paths for a stock price with 100 discretization points for each path. That
is, we have to simulate 10,000× 100 normal variates to construct the paths, and do
99 regressions for the algorithm in order to calculate one estimate of the option value.
To obtain the same level of accuracy in implementing the MLSM method, we need
to use 10,000 paths for a stock price with 101 discretization points for each path
(one additional dimension for the random initial prices). Then we have to simulate
10,000× 101 normal variates to construct the paths, and do 100 regressions (one
additional regression is conducted at time 0) for the algorithm in order to calculate
one estimate of option value and other derivatives. Our experiments show that the
differences in computational effort between the two algorithms are so small as to be
negligible.

One important advantage of Monte Carlo simulation techniques is that they lend
themselves well to parallel computing architecture. From the perspective of the
MLSM method, the only constraint on parallel computation is that the regression
needs to use the cross-sectional information in the simulation. To overcome this
bottleneck, there are many ways in which regressions could be estimated using
individual CPUs, and then aggregated across CPUs to form a composite estimate of
the conditional expectation function. Furthermore, it may be promising to use quasi-
Monte-Carlo techniques in conjunction with the MLSM algorithm to significantly
improve its computational speed and efficiency. Important recent efforts in this
direction include Caflisch and Chaudhary (2004) and Chaudhary (2005), where they
have developed various approaches to incorporate quasi-Monte-Carlo techniques
into the LSM algorithm.

8.4 Calculating other risk sensitivities

At present the MLSM method is focused on estimating risk sensitivities of the option
price to initial spot prices. Computing Greeks with respect to other parameters, like
vega, falls out of the current scope of our MLSM method. However, we believe
that the MLSM idea could be slightly extended to handle relevant issues like this.
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Pricing and hedging American-style options 121

Actually, one possible strategy for extending the MLSM method to estimate vega
we now have in mind is to simulate a different value of volatility for each stock
path from a carefully chosen distribution, and eventually compute a regression
function of volatility values by regressing pathwise payouts against pathwise volatil-
ities. We feel that this would be one interesting direction to explore for future
research.

9 CONCLUSION AND FUTURE DIRECTIONS

This paper presents a simple new approach for approximating the values and
hedging parameters of American-style options by simulation. This approach is
intuitive, accurate, easy to implement and computationally efficient. We illustrate this
technique using a number of increasingly complex but realistic examples, including
a Bermudan max-call option on multiple assets, an exotic American–Bermudan–
Asian option and an American put option when the underlying asset follows a jump-
diffusion process.

At present, three future directions seem promising with the MLSM algorithm.
First, as Chaudhary (2005) has already successfully incorporated the use of quasi-
random sequences and Brownian bridges into the LSM algorithm, we believe it
will also be fruitful to try similar ideas to greatly speed up the MLSM algorithm.
Second, the MLSM algorithm is ready to be applied to more complex options than
the ones we have presented in this paper. For example, it could be used to calculate
the price sensitivities of a Bermudan swaption to different forward rates on the initial
term structure.11 Third, it looks promising to modify the MLSM approach further to
be able to estimate risk sensitivities for American-style options under a stochastic
volatility setting. Partial results can be found in Stentoft (2005).

11Longstaff and Schwartz (2001) conduct an in-depth analysis of this example using the LSM
algorithm.
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