1. The Black-Scholes equation is

$$-f_t = \frac{1}{2} \sigma^2 S^2 f_{SS} + rSf_S - rf$$

The value for a stock is \(f(S,t) = S \).

Then \(f_t = 0 \)

\(f_s = 1 \)

\(f_{ss} = 0 \)

So in B-S this gives

$$0 = \frac{1}{2} \sigma^2 S^2 \cdot 0 + rS \cdot 1 - rS$$

$$= 0 \quad \checkmark$$

The value for a cash account is \(f = A = A_0 e^{rt} \)

\(f_t = A_t = rA_0 e^{rt} = rA \)

\(f_s = f_{ss} = A_s = A_{ss} = 0 \)

So in B-S this gives

$$-rA = 0 + 0 - rA$$

2. Consider suppose that \(S_0 \) and \(R_0 \) are the values at \(t = 0 \). Form the portfolio

$$P = R_0 S - S_0 R$$

At \(t = 0 \)

$$P = P_0 = R_0 S_0 - S_0 R_0 = 0$$

At \(t = dt \), there are 4 possibilities
\[P = (R_o (uS_o) - S_o (uR_o)) = 0 \quad \text{if } S \text{ and } R \text{ go up} \]
\[= (R_o (dS_o) - S_o (dR_o)) \quad \text{if } S \text{ and } R \text{ go down} \]
\[= (u-d) R_o S_o > 0 \quad \text{if } S \text{ goes up and } R \text{ goes down} \]
\[= -(u-d) S_o R_o < 0 \quad \text{if } S \text{ goes down and } R \text{ goes up} \]

By assumption, the third possibility never happens, i.e., if \(S \) goes up, then \(R \) goes up. It follows that \(P \leq 0 \) at \(dt \). No-arbitrage then implies that \(P = 0 \) for all possibilities at \(dt \).

But then the 4th possibility does not happen. So, \(S \) and \(R \) either both go up or both go down. This implies that \(p' = q' \).
3. The risk neutral probability is

\[p = \frac{e^{rd} - d}{u - d} = \frac{e^{r - .9} - 1.2 - .9}{1.2 - .9} = \frac{11 - .9}{1.2 - .9} = \frac{3}{3} \]

The payout \(S_u \) at \(T = 1.0 = dt \) is

\[c_1 = \begin{cases} c_u & \text{up step} \\ c_d & \text{down step} \end{cases} \]

\[c_u = \max(u S_0 - X, 0) \]

\[c_d = \max(d S_0 - X, 0) \]

\[= \begin{cases} 120 - 100, 0 \\ 90 - 100, 0 \end{cases} \]

\[= 20 \]

\[= 0 \]

\[S_0 = e^{-rd + \frac{1}{2} \sigma^2 (p c_u + (1-p) c_d)} \]

\[= \frac{1}{1.1} \cdot \frac{2}{3} \cdot 20 \]

\[= \frac{40}{3.3} \]
4. By a telescoping sum
\[x_2 = (x_2 - x_1) + (x_1 - x_0) + x_0 \]
\[= \sqrt{dt} \omega_2 + \sqrt{dt} \omega_1 + x_0 \]
\[= \int_0^t \omega dt + x_0 \]

with
\[\sigma^2 = (\sqrt{dt})^2 + (\sqrt{dt})^2 = 2dt = 4st, \text{ i.e. } \sigma = 2\sqrt{st} \]
in which \(\omega \) is \(N(0,1) \)

Also
\[y_4 = (y_4 - y_3) + (y_3 - y_2) + (y_2 - y_1) + (y_1 - y_0) + y_0 \]
\[= \sqrt{st} y_4 + \sqrt{st} y_3 + \sqrt{st} y_2 + \sqrt{st} y_1 + x_0 \]
\[= Y + x_0 \]

with
\[\sigma^2 = (\sqrt{st})^2 + (\sqrt{st})^2 + (\sqrt{st})^2 + (\sqrt{st})^2 \]
\[= 4st \]
\[\text{i.e. } \tau = 2\sqrt{st} \]
and \(Y \) is \(N(0,1) \)

So \(x_2 \) and \(y_4 \) have the same statistics.