NOTATION. Use the following notation:

For an option, \(T \) is exercise time (in years) and \(K \) is strike price.

For the Black-Scholes model, \(S \) is equity price; \(t \) is time; \(\sigma \), \(\mu \) and \(r \) are the volatility, average growth rate and (continuously compounded) risk-free rate of return.

For the CRR model, \(S_0 \) is the initial stock price, \(S_n \) is the stock price after \(n \) steps, \(u \) and \(d \) denote the factors for increase and decrease of the equity price, \(dt \) is the time step, the real probabilities are \(p \) and \(q \), and the risk-neutral probabilities are \(p^* \) and \(q^* \). Use the continuously compounded interest rate \(r \) for the CRR model, as well as for the Black-Scholes model.

You may use the facts that \(\log(100/90) = .105 \) and \(\exp(.05) = 1.05 \).

1. Consider a call option, for an equity following the Black-Scholes model, with \(T = 1 \) and \(K = 90 \) on an equity with initial price \(S(0) = 100 \), and with \(\sigma = 0.2 \), \(\mu = 0.1 \) and \(r = 0.05 \).

(a) What is the value \(c(0) \) of the call option at \(t = 0 \)?

(b) What is the value of \(\Delta \) for this option at \(t = 0 \)?

2. Consider a forward contract to purchase an equity at strike price \(K \) and at time \(T \).

(a) Use a no arbitrage argument to show that the price of the forward contract is \(F(S, t) = S - Ke^{-r(T-t)} \).

(b) Show that \(F \) solves the Black-Scholes PDE.

3. Define a digital call \(d_c \) and a digital put \(d_p \) with strike price \(K \) and exercise time \(T \) to have payouts

\[
d_c(S, T) = \begin{cases} 1 & \text{if } S \geq K \\ 0 & \text{if } S < K \end{cases}
\]

\[
d_p(S, T) = \begin{cases} 0 & \text{if } S \geq K \\ 1 & \text{if } S < K \end{cases}
\]

(a) Use a no arbitrage argument to show that \(d_c + d_p = e^{-r(T-t)} \).

(b) Find the initial price of \(d_p \) and \(d_c \) on a two step CRR model with \(u = 1.1 \), \(d = 0.9 \), \(S_0 = K = 100 \), \(r = 0.05 \), \(dt = .5 \) and \(p = 0.5 \).

(c) Show that the result from (b) satisfies the “digital put-call parity” relation in (a).

4. Consider a call option for a two-step CRR model. Define the probability for exercise of the option to be \(p_c \) in the real world and \(p_c^* \) risk-neutral world.

(a) Find a formula for \(p_c \).

(b) Find a formula for \(p_c^* \).

(c) Assuming that the CRR model has a risk premium (corresponding to risk aversion), show that \(p_c^* < p_c \) for all values of the strike price \(K \).

(c) (Bonus Problem) For a three-step CRR model, show that the inequality in (c) for some of values of \(K \) and \(p \).