HW#2: due Fri 10/31/2014

Problem 1: Show that, for a sequence of sets \(\{A_n\} \) and a set \(A \), we have \(\lim_{n \to \infty} A_n = A \) if and only if \(1_{A_n} \to 1_A \) pointwise. Here \(1_A \) is the characteristic function of \(A \).

Problem 2: Ex 1.2.15, Page 33

Problem 3: Ex 1.2.17, Page 33

Problem 4: Ex 1.2.18, Page 33

Problem 5: Ex 1.2.20, Page 34

Problem 6: Ex 1.2.21, Page 34

Problem 7: Ex 1.2.23, Page 35

Problem 8: Show that any \(\sigma \)-algebra of sets is either finite or uncountable.

Problem 9: Ex 1.2.24, Page 35

Problem 10: Let \(\Omega \) be any set. Prove that if \(\{A_\alpha : \alpha \in \mathcal{I}\} \) is any collection of \(\sigma \)-algebras of subsets of \(\Omega \), then their intersection, \(\bigcap_{\alpha \in \mathcal{I}} A_\alpha \), is also a \(\sigma \)-algebra. Check that both \(\{\emptyset, \Omega\} \) and the power set \(2^\Omega := \{A: A \subset \Omega\} \) are \(\sigma \)-algebras.

Problem 11: Let \(\mu \) be a finite measure on any \(\sigma \)-algebra \(\mathcal{A} \). Assume that \(\mu \) is *non-atomic* in the sense that for each \(A \in \mathcal{A} \) with \(\mu(A) > 0 \) there is a \(B \in \mathcal{A} \) with \(B \subset A \) such that \(0 < \mu(B) < \mu(A) \). Prove that \(\{\mu(A): A \in \mathcal{A}\} \) is a closed interval containing 0.

Problem 12: Ex 1.2.27, Page 38

Problem 13: Ex 1.3.3, Page 50

Problem 14: Ex 1.3.4, Page 50

Problem 15: Ex 1.3.5, Page 50

Problem 16: Ex 1.3.6, Page 50