Assignment #9

Note quiz announcement below.

Homework assignment #9 is due in lecture Friday, June 2. Be sure to try these problems before your discussion section!

<table>
<thead>
<tr>
<th>section</th>
<th>page</th>
<th>To do but not hand in</th>
<th>To hand in</th>
</tr>
</thead>
<tbody>
<tr>
<td>§6.2</td>
<td>p. 370</td>
<td>1, 3, 11, 13</td>
<td>4, 6, 8, 12, 14</td>
</tr>
<tr>
<td>§6.3</td>
<td>p. 374</td>
<td>1, 3, 9, 12, 15</td>
<td>2, 4, 10, 14, 16</td>
</tr>
<tr>
<td>§6.4</td>
<td>p. 384</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>below</td>
<td>Q-1, Q-3</td>
<td>Q-2, Q-4</td>
<td></td>
</tr>
</tbody>
</table>

Quiz in section, Week 9 (May 30 and June 1): Know:
(a) formulas for $\cosh x$, $\cos(x + y)$, $\cos(x - y)$, $\sin(x + y)$, $\sin(x - y)$;
(b) formula for $\cos(mx) \cos(nx)$ and how to derive it;
(c) $\int_{-\infty}^{\infty} \cos(mx) \cos(nx) \, dx$ (for $m, n \geq 0$, cases $m = n$ and $m \neq n$);
(d) formulas for the Fourier coefficients a_n, b_n of a periodic function f of period 2π;
(e) the reasoning showing how the formulas in (d) are derived.

Problem Q-1. Let S be any set of real numbers bounded above. As you know, an upper bound for S is any M so that $s \leq M$ for all s in S. It is a fact that S always has a least upper bound, called the supremum of S, or sup S. If S is not bounded above, we can write sup $S = \infty$. If S has a maximum element (i.e., largest number), then that is sup S. Find sup S in the following cases.
(a) S is the interval $(-\infty, 2]$.
(b) S is the set of all numbers $3 - \frac{1}{n}$, $n = 1, 2, 3, \ldots$.
(c) S is the set of all numbers $3 + \frac{1}{n}$, $n = 1, 2, 3, \ldots$.
(d) S is the set of all integers (whole numbers).
(e) S is the set of all values of $\frac{x}{x+1}$ for $x \geq 1$.

Q 1
Problem Q-2. The “sup norm” of a function f on an interval I is the sup of the set of values of $|f|$ on I. We denote the sup of f on I by $\|f\|$. (Often people write $\|f\|_\infty$, but we won’t.) If f has a maximum absolute value on I, then that’s the value of $\|f\|$. Find $\|f\|$ in these cases:
(a) $f(x) = xe^{-x}$ on $(0, \infty)$.
(b) $f(x) = x^2$ on $[-4, 3]$.
(c) $f(x) = x^2$ on $[0, 2)$.
(d) $f(x) = 1/x$ on $(0, \infty)$.
As you see, this concept is handy because $\|f\|$ always has a value even if there is no actual maximum value. Remember, though, that a continuous function on a closed interval $[a, b]$ does have a maximum value (so that’s its sup norm).

Problem Q-3. For functions f, g on an interval, $\|f - g\|$ is essentially the maximum distance between the two functions. Draw a sketch showing two continuous functions f, g on $[0, 2]$ with $\|f - g\| < \frac{1}{4}$, with f above g in some places and below in others.

Problem Q-4. The sup norm gives an easy way of thinking about uniform convergence: $f_n \to f$ on an interval I means that $\|f_n - f\| \to 0$ as a sequence of numbers. That’s all! (Let’s stay away from cases where the value would be infinite; in such a case we’d have to say that the value of $\|f_n - f\|$ is eventually finite). In any problem on uniform convergence you can write $\|f_n - f\|$ instead of M_n or ϵ_n.

Do p. 163, Problem 5 using this notation.