Assignment #6

Due Friday, February 16.

Problem I-1. Recall the theorem of Erdös and Szekeres stating that for each $m \geq 3$ there is a number $N(m)$ such that for $n \geq N(m)$, any n points in the plane in general position include m points forming a convex m-gon. Re-prove this theorem using the following idea\(^1\): Number the points as p_1, \ldots, p_n and 2-color the triangles they make by saying that $\{p_i, p_j, p_k\}$ with $i < j < k$ has one color if going from p_i to p_j to p_k traverses two sides of that triangle counterclockwise, or the other color if clockwise.

Problem I-2. Recall the other theorem attributed to Erdös and Szekeres, that in a sequence of $n^2 + 1$ distinct integers there is either an increasing subsequence of length $n + 1$ or a decreasing subsequence of length $n + 1$. (a) Re-prove this theorem using Dilworth's theorem and the product ordering $(i, a_i) \leq (j, a_j)$ when $i \leq j$ and $a_i \leq a_j$.

(b) Can you generalize the theorem to the case where the asserted lengths of increasing and decreasing subsequences are possibly different?

Problem I-3. For an n-set X, consider antichains in the Boolean algebra $\text{Pow}(X)$ of subsets of X, partially ordered by inclusion. One way to make an antichain is to take all subsets of some fixed size k, so the antichain has $\binom{n}{k}$ elements. The largest such antichain is obtained for the middle binomial coefficient if n is even, or the middle middle two, if n is odd, so the maximum length of a "horizontal antichain" is $\lfloor \frac{n}{2} \rfloor$. Here $\lfloor \cdot \rfloor$ is the "floor" (round-down) function.

Could there be a longer antichain formed from subsets of different sizes? "Sperner's Theorem\(^2\)" says no. Prove Sperner's Theorem. (Suggested method: Let A_1, \ldots, A_m be an antichain and let $n_i = |A_i|$. In the set \mathcal{C} of all maximal chains of $\text{Pow}(X)$, collect together all those that go through an A_i in common. Count these, compared to $|\mathcal{C}|$. Develop a relation with $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.)

Problem I-4. In a graph, the degree of a vertex is the number of edges from it. A graph is said to be regular if all its vertices have the same degree.

\(^1\)This proof was supposedly invented on an exam by a student who had missed the relevant lecture!

\(^2\)There is also a Sperner's Lemma in topology.
Show that a regular bipartite graph has a “perfect matching”—a matching involving every vertex once.

Problem I-5. In a real vector space, a *convex combination* of vectors is a linear combination in which the coefficient are nonnegative and add up to 1, in other words, a weighted average of vectors. A *doubly stochastic matrix* is a nonnegative matrix in which every row sums to 1 and every column sums to 1. Prove a theorem of G. Birkhoff:

Every $n \times n$ stochastic matrix is a convex combination of permutation matrices.

3There are two Birkhoffs, father and son. The father, George David Birkhoff, proved the ergodic theorem and was the most famous American mathematician of his time; he proved the ergodic theorem and helped put American mathematics on the map in the first part of the last century. The son, Garrett Birkhoff, was a major contributor to lattice theory, among other things.