Accurate Simulation of 2-Well Quantum Devices

Chris Anderson
UCLA Mathematics Department

Mark Gyure Ed Croke Richard Ross Geoff Simms
HRL

DARPA Quantum Information Science and Technology (QuIST)
Review Meeting and Workshop
St. Augustine, Florida, April 5-7 2005
The Target Device

- Creates and confines a quantum dot electrostatically
- Senses dot using a quantum wire.

Device Structure

- Side Gate
- Center Gate
- Side Gate

- AlInAs
- InP
- δ-doping
- InGaAs
- InP
- InP
- γ-doping

Device Structure
Device Operation

Side voltage applied
quantum wire
Multiple states in the lower well.
Confinement in 2 directions.

Side and dot voltage applied
quantum wire + quantum dot
Single state in the upper well.
Confinement in 3 directions
Multiple states in the lower well.
Confinement in 2 directions
Operational Behavior Discrepancy

The predicted side gate bias required to pinch off the lower well quantum wire is too high.

\[
\text{Pinchoff } V_{\text{side}} = \begin{cases}
\sim 10 \text{ V (simulation)} \\
\sim 1 \text{ V (experiment)}
\end{cases}
\]
Use a fixed charge boundary condition rather than a fixed potential boundary condition on the ungated surface.

Specify

\[\kappa_1 \frac{\partial \phi_1}{\partial n} - \kappa_2 \frac{\partial \phi_2}{\partial n} = \sigma_{\text{surface charge}} \]

\(\phi_1 = \text{potential inside device} \)

\(\phi_2 = \text{potential outside device} \)
Boundary Condition Comparison (2D)

Fixed Charge BC

Fixed Potential BC

Using fixed charge boundary conditions at the ungated surface “narrows” the potential between the side gates.
Using a fixed charge boundary condition at the ungated surface lowers the pinchoff voltage.
Boundary Condition Comparison (3D)

Fixed potential boundary conditions

Fixed charge boundary conditions

- Top potential (transverse slice)
- Lower well potential (transverse slice)
Boundary Condition Comparison (3D)

Lower well pinchoff comparison*

Lower well potential minimum (V)

Using a fixed charge boundary condition at the ungated surface lowers the pinchoff voltage.

* Calculations done using “local” density of states calculation
Consequences

- The simulation results with fixed charge boundary conditions more accurately reflect experimental results (See E. Croke and M. Gyure poster)

- The use of fixed charge boundary conditions leads to a problem for the potential that is no longer separable.
Handling the Numerical Consequences

Problem: How to solve a non-separable elliptic PDE using a solver* that explicitly depends upon separability?

Solution: Transform the non-separable boundary conditions into separable boundary conditions.

Handling the Numerical Consequences

Transform mixed boundary conditions to equivalent Neumann boundary conditions.

\(\kappa \frac{\partial \phi}{\partial n} \) specified

\(\phi \) specified

\(\frac{\partial \phi}{\partial n} \) specified
Transforming boundary conditions ...

Equations to be solved:

$$L \begin{pmatrix} \frac{\partial \phi_{\text{gates}}}{\partial n} \end{pmatrix} = \phi_{\text{gates}}$$

Neumann data at gates

Neumann - Dirichlet operator: evaluated using FFT’s

The critical aspect for efficiency

The transformation equations are solved iteratively using pre-conditioned conjugate gradients (4-5 iterations).
Conclusions

• The simulation results with fixed charge boundary conditions on the ungated surface more accurately reflect experimental results.

• The non-separable nature of the new boundary conditions does not impact the use of FFT’s to evaluate the Neumann-Dirichlet operator.

• The Neumann-Dirichlet operator can be efficiently inverted to obtain equivalent separable boundary conditions.

• The non-separable potential calculation takes only 2x the time of the separable problem!