Data structures: arrays, linked lists, doubly linked lists, priority queue

Example: Gale-Shapley algorithm

- Need to encode preferences of each man and woman
- Need to know at each step which men & women are free.

Arrays

* Query \(A[i,j] \) in O(1) time (direct access)
* Check if \(e \) is in \(A \) in O(n) time (check one by one)
* If \(A \) is sorted, then check if \(e \) is in \(A \) in O(logn) time (binary search)
* (Drawback) dinamically maintain list (add/delete element list)

Linked List (good for dynamically maintaining list)

* Each element has a pointer to the next element (null if last element)
* Have pointer to first element
* Query \(A[i,j] \) in O(1) time
* Check if \(e \) is in list in O(n) time
* In a doubly linked list you also have pointers to previous element on list

Deletion: splice list O(1) operations

\[\quad \]
* insertion: splice and extend list in O(1) operations
 insert e between e' and e'':

 ![Diagram showing insertion of e between e' and e'']

 set e'.next to e e.prev to e'
e''.prev to e e.next to e''

Example: Gale-Shapely algorithm

Algorithm

Pseudo code

```
start \( S = \emptyset \)
while ( m is unmatched and has not proposed to all women)
  \( w = \) first woman in m's list not proposed yet \( w \) proposes to \( m \)
  if \( w \) is free
    add \((m,w)\) to \( S \)
  else if \((m',w) \in S \) and \( w \) prefers \( m \) to \( m' \)
    add \((m,w)\) to \( S \), \( m' \) becomes free
  else if \((m',w) \in S \) and \( w \) prefers \( m' \) to \( m \)
    \( m \) remains free
return \( S \)
```

Goal: Give implementation of GS algorithm with \(O(n^2) \) running time. (we know at most \(n^2 \) iterations of while loop, need to show runtime of each iteration is \(O(1) \)).

input \(M = [1, 2, \ldots, n] \), \(W = [1, 2, \ldots, n] \)

- \(n \times n \) array \(\text{pref}_M \), \(\text{pref}_M[m, i] = w \) \(\text{i if woman } w \text{ is } i \text{th preference for } m \)
- \(n \times n \) array \(\text{pref}_W \), \(\text{pref}_W[w, i] = m \) \(\text{i if man } m \text{ is } i \text{th preference for } w \)

ex \(n = 3 \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Tasks in each iteration

1. **identify a free man**
 - Use linked list `freem` of free men
 - pick first element `m` of list
 - if `m` becomes engaged delete from list
 - if new `m'` becomes free insert beginning list

2. for `m` identify highest ranked `w` not proposed yet
 - use array `next[j]`, `next[w] = j` position jth woman on preference list
 - `m` proposes to `PrefM[m, next[w]]`
 - then `next[w] = next[w] + 1`

3. for `w` need to check if engaged and if so with who?
 - use array `partner[w]`

 \[
 \text{Partner}[w] = \begin{cases}
 m' & \text{if current partner of } m' \\
 \text{null} & \text{if } m' \text{ is single}
 \end{cases}
 \]

4. for `w` has partner `m'` and `m` proposes need to decide which of `m` or `m'` is preferred by `w`
 - Option 1: find `i, j` such that `PrefW[w, i] = m`
 \[
 \text{PrefW}[w, j] = m'
 \]
 - compare `i` and `j`
 - Option 2: before loop, compute `n x n` array of inverse preferences for each `w`

 \[
 \begin{array}{c|cccc}
 \text{w} & 1st & 2nd & 3rd & 4th \\
 \hline
 1 & 2 & 3 & 4 \\
 2 & 1 & 3 & 4 \\
 3 & 2 & 1 & 4 \\
 4 & 3 & 2 & 1 \\
 \end{array}
 \quad \Rightarrow \quad
 \begin{array}{c|cccc}
 \text{w} & 1 & 2 & 3 & 4 \\
 \hline
 1st & 3rd & 1st & 2nd & 4th \\
 \end{array}
 \]

 \[
 \text{InvPrefW}[w, m] = i \quad \text{if } m \text{ is ranked } i \text{ by } w.
 \]

 \[
 \text{Compare if } \text{InvPrefW}[w, m] = i \text{ and } \text{InvPrefW}[w, m'] = j
 \]

 \[
 O(1)
 \]

 each iteration

Conclusion: We complete tasks 1, 2, 3, 4 each in runtime \(O(1) \).

So runtime of this implementation of GS Algorithm has runtime \(O(n^2) \) each iteration.

\[
\text{runtime} \quad O(n^2) + O(n^2) = O(n^2)
\]

preprocessing while loop