Tractability (Ch 2 [KTJ])

Goal: find algorithms that are "efficient" to solve (computational) problems.

* What do we mean by "efficient"?
 * problems are discrete: we are searching implicitly within a large set of combinations
 * we focus on running time (resource is time)
 However, there are other resources (memory = space)
 So, we analyze running time as a function of input N

** Ex: Stable Matching: implicitly looking through $n!$ perfect matchings!
 * input N size preference lists n men n women

 $$N = 2n^2$$

* We analyze worst-case running time, i.e., worst possible running time of algorithm to all inputs of size N.
 (doing "average-case" is more tricky, what is a random input?)

* A benchmark to worst case running time of algorithm is brute force search (search over search space of possibilities)

** Ex: Stable Matching, we showed there are at most n^2 iterations of Algorithm. Later we show each iteration takes a constant # of computation steps.

 Brute force: looking at all $n!$ perfect matchings

 $n^2 << n!$

** Def: Algorithm is efficient if it is "qualitatively better" than brute force search.

** Vague.
An algorithm has polynomial running time if it is bounded by $C \cdot N^d$ for constants $C > 0$, $d > 0$.

- in such an algorithm doubling the input $N \to 2N$ results in multiplying bound by constant $C(2N)^d = 2^d \cdot C N^d$

Def. An algorithm is **efficient** if it has a polynomial running time.

More concrete definition

ex. The GS-algorithm for stable matchings is efficient.

Order of growth

need to express worst-case running time of Algorithm on input size n as bounded by some function $f(n)$.

"There is no sense in being precise when you don’t even know what you are talking about." John von Neumann

- knowny worst-case running time is $\sqrt{3} n^2 - 3n + 81$ has drawbacks
 - is too precise
 - hard to get if algorithm is in pseudocode
 - difficult to compare to other algorithms with so many details

We want a more coarse bound like $\leq C \cdot n^2$

let $T(n)$:= worst-case running time algorithm on input size n

* $T(n)$ is $O(f(n))$ \(\implies T(n) = O(f(n)) \) \(\implies T(n) \text{ is order } f(n) \) means there exists $C > 0$ and n_0 s.t. for $n \geq n_0$ we have $T(n) \leq C \cdot f(n)$ \(\text{ (upper bounded by } f \text{)} \)

ex. $T(n) = an^2 + bn + c$, $a, b, c > 0$ is $O(n^2)$ since for $n \geq 1$

$an^2 + bn + c \leq an^2 + bn^2 + cn^2 = (a + b + c) \cdot n^2$

Also $T(n)$ is $O(n^3)$, $O(n^4)$, ---

but $O(n^2)$ is a tight bound for $T(n)$.
* \(T(n) \) is \(\Omega(g(n)) \)
(also \(T(n) = \Omega(g(n)) \))

mean there exists constants \(c > 0 \) and index no \(s.t. \) for \(n \geq n_0 \)

\[T(n) \geq c \cdot g(n) \]
(\(T \) lower bounded by \(g \))

ex. \(a \cdot n^2 + b \cdot n + c \geq a \cdot n^2 \) for \(n \geq n_0 \)

\((a, b, c \geq 0) \)

so \(a \cdot n^2 + b \cdot n + c = \Omega(n^2) \).

Also \(a \cdot n^2 + b \cdot n + c = \Omega(n) \).

Note \(T(n) = \Omega(g(n)) \) iff \(g(n) = O(T(n)) \)

* \(T(n) \) is \(\Theta(f(n)) \)
(also \(T(n) = \Theta(f(n)) \))

mean both \(T(n) = O(f(n)) \) and \(T(n) = \Omega(f(n)) \)

i.e. \(f(n) \) is a tight bound for \(T(n) \).

ex. \(a \cdot n^2 + b \cdot n + c \), \(a, b, c > 0 \) is \(\Theta(n^2) \).

Note that \(\lim_{n \to \infty} \frac{a \cdot n^2 + b \cdot n + c}{n^2} = a \)

Prop: If \(f(n), g(n) \) are functions such that \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \)
then \(f(n) = \Theta(g(n)) \).

Pl: If limit exists then there is index no \(s.t. \) for \(n \geq n_0 \)

\[\frac{1}{c} \leq \frac{f(n)}{g(n)} \leq c \Rightarrow \]

\[f(n) \leq c \cdot g(n) \]

\(f(n) \geq \frac{1}{c} \cdot g(n) \)

ex (unrelated) \(\Pi(n) \) counts \# of primes \(\leq n \) then

\[\Pi(n) = \Theta\left(\frac{n}{\log n}\right) \]
Properties (growth rate)

i) \(f = O(g), \ g = O(h) \) then \(f = O(h) \)

\[\{ \text{(transitivity)} \]

\[\text{ii) } f = \Omega(g), \ g = \Theta(h) \text{ then } f = \Theta(h) \]

\[\text{iii) } f = \Theta(g), \ g = \Theta(h) \text{ then } f = \Theta(h) \]

\[\text{iv) } f = O(h), \ g = O(h) \text{ then } f + g = O(h) \]

\[\text{for } i=1, \ldots, k \text{ if } f_i = O(h) \text{ then } f_1 + f_2 + \ldots + f_k = O(h) \]

\[\text{v) If } g=O(f) \text{ then } f + g = \Theta(f) \]

Exercise True or False:

\[\sum_{i=1}^{n} i = O(n) \]

\[= \Omega(n) \]

\[= \Theta(n^2) \]

Asymptotic bounds of:

polynomials

\[f(n) = a_d n^d + a_{d-1} n^{d-1} + \ldots + a_1 n + a_0 \text{, } d \text{ degree} \]

Prop If \(f(n) \) is a polynomial in \(n \), degree \(d \), \(a_d > 0 \) then

\[f(n) = O(n^d) \].

Prop Each term \(a_i n^i \leq |a_i| n^i \) so \(a_i n^i = O(n^i) \)

so \(f(n) = O(n^d) \) by property iv) above.

Prop If \(f(n) \) is a polynomial in \(n \), degree \(d \), \(a_d > 0 \) then

\[f(n) = \Theta(n^d) \].

Exercise If algorithm has running time \(O(n \log n) \) then this also is polynomial time, since:

\[\text{for } n \geq 1 \text{, } \log n \leq n \]

so for \(n \geq 1 \), \(n \log n \leq n^2 \).
Logarithms \(\log_b x = y \) means \(b^y = x \)

* \(\log_2 n + 1 \) is the number of bits used to represent \(n \) in binary.
* \(\log_b n + 1 \) is the number of "digits" \(v \) in \(n \) in base \(b \).

So \(\log_b n \) grows very slow:

For all \(b > 1 \) and \(x > 0 \) real \(\log_b(n) = O(n^x) \)

* We ignore the base \(b \) of the logarithm since they are related up to a constant
 \[\log_a n = \frac{\log_b n}{\log_b a} \]
 i.e. \(\log_a n = \Theta(\log_b n) \)

So we use \(\log n \)

Exponentials \(f(n) = r^n \) for some \(r \) (normally \(r > 1 \))

For all \(r > 1 \) and all \(d > 0 \)
\(n^d = O(r^n) \)

* Sometimes we do not specify the base \(r \), although all exponentials are different. (\(s > r > 1 \), \(r^n \neq \Theta(s^n) \)), since we just want to convey exponential growth.