1. Prove that \(\text{ed}(\mathcal{A} \times \mathcal{B}) \leq \text{ed}(\mathcal{A}) + \text{ed}(\mathcal{B}) \).
2. Prove that the functor \(K \mapsto \text{M}_n(K)/(\text{similarity relation}) \) is represented by an affine scheme.
3. Let \(L/F \) be a finite field extension and \(G \) is the group of all automorphisms of \(L \) over \(F \). Prove that \(\text{Spec}(L) \) is a \(G \)-PHS if and only if \(L/F \) is a Galois field extension.
4. Prove that every \(\mu_n \)-PHS is of the form \(\text{Spec}(F[t]/(t^n - a)) \) for some \(a \in F^\times \).
5. Prove that a twisted form of the matrix algebra \(\text{M}_n(F) \) is a central simple \(F \)-algebra of degree \(n \).
6. Prove that a twisted form of the algebra \(F_n := F \otimes F \) is a product of finitely many finite separable field extensions of \(F \).
7. Let \(X \rightarrow Y \) be a \(G \)-torsor. Prove that the morphism \(G \times X \rightarrow X \times_Y X \) taking \((g, x) \) to \((gx, x) \) is an isomorphism.
8. Determine the essential dimension of the alternating group \(A_4 \).
9. Let \(G \) be a finite group acting faithfully of a finite dimensional vector space \(V \). Suppose every eigenspace of every nontrivial element of \(G \) is different from \(V \). Prove that \(\text{ed}(G) \leq \text{dim}(V) - 1 \).
10. Determine the essential dimension of the functor \(K \mapsto \text{the set of isomorphism classes of non-degenerate quadratic forms of dimension } n \text{ over } K \text{ with trivial discriminant} \).
11. Prove that \(\text{cdim}(X) = \text{cdim}(X \times X) \) for every variety \(X \).
12. Let \(A \) and \(B \) be two central simple \(F \)-algebras. Prove that \(SB(A) \times SB(B) \) is isomorphic to a closed subvariety of \(SB(A \otimes_F B) \).
13. Let \(A \) be a central simple \(F \)-algebra. Consider the category \(\mathcal{X} \) whose objects over a scheme \(X \) are the pairs \((E, \varphi) \) such that \(E \) is a vector bundle over \(X \) and \(\varphi : A \otimes O_X \rightarrow \text{End}(E) \) is an algebra isomorphism. A morphism between pairs is given by a morphism between vector bundles commuting with \(\varphi \). Prove that \(\mathcal{X} \) is a gerbe banded by \(\mathbb{G}_m \).
14. Let \(V \) be a vector space over \(\mathbb{F}_p \) of dimension \(n \), \(p \) a prime, and let \(f : V \setminus \{0\} \rightarrow \mathbb{R} \) be a function. Define inductively the vectors \(v_1, v_2, \ldots, v_n \) as follows: \(v_i \) is a vector in \(V \setminus \text{Span}(v_1, \ldots, v_{i-1}) \) with the smallest value \(f(v_i) \). Prove that the basis \(B := \{v_1, \ldots, v_n\} \) is minimal, i.e., the sum

\[\sum_{v \in B} f(v) \]

is the smallest over all bases \(B \).