

Exercise 0. Make sure you know how to do the problems from yesterday.

Exercise 1. Let κ be an infinite cardinal. Show that κ^+ is a regular cardinal.

Exercise 1.
(a) Show that $\text{MA}(\kappa)$ is equivalent to the same statement if we replace ‘dense’ by ‘dense open’.
(b) Show that $\text{MA}(\kappa)$ is equivalent to the same statement if we replace ‘dense sets’ by ‘maximal antichains’. (That is, $\text{MA}(\kappa)$ is equivalent to the statement: for every ccc poset \mathbb{P} and every collection C of $\leq \kappa$ maximal antichains of \mathbb{P}, there is a filter that meets every maximal antichain in C.)

Exercise 2. Show that the bounding number b is a regular cardinal.

Definition. For infinite sets $x,y \subseteq \omega$, we say that x splits y if $y \cap x$ and $y \setminus x$ are both infinite. (Draw a picture.) A family $F \subseteq \mathcal{P}(\omega)$ is a splitting family if each infinite $y \subseteq \omega$ is split by at least one $x \in F$. The splitting number s is the least cardinality of a splitting family.

Exercise 3. Show that $\aleph_0 < s \leq 2^{\aleph_0}$.

Definition. Let $x,y \subseteq \omega$. As usual, we write $x \subseteq^* y$ to mean that $x \setminus y$ is finite. A sequence $\langle x_\alpha : \alpha < \kappa \rangle$ of distinct infinite subsets of ω is a tower if $x_\beta \subseteq^* x_\alpha$ whether $\alpha < \beta$. The tower number t is the minimal length of a maximal tower. (A maximal tower is one for which no further set is almost-contained in every member of the tower.)

Exercise 4.
(a) Show that $\aleph_0 < t \leq 2^{\aleph_0}$.
(b) Show that t is a regular cardinal.
(c) Show that $t \leq s$.

Exercise 5. Show that there is a mad family of cardinality 2^{\aleph_0}.

Date: 12 July 2016.