Exercise 0. Make sure you know how to do the problems from yesterday.

Exercise 1. A poset P is kinda homogeneous if for any $p, q \in P$ there is an automorphism $i : P \to P$ such that $i(p)$ and q are compatible.

(a) Show that if I is an infinite set and J is any nonempty set then the poset $\text{Fn}(I, J) = \{p : p \text{ is a function and } \text{dom}(p) \subseteq I \text{ is finite and } \text{ran}(p) \subseteq J\}$, ordered by reverse inclusion, is kinda homogeneous.

(b) Suppose that P is kinda homogeneous and G is P-generic. Let $x \in M$. Show that if $M[G] \models \phi[x]$, then in fact $1_P \models \phi(x)$.

(c) Conclude that if P is kinda homogeneous then for any P-generic filters G and H, the generic extensions $M[G]$ and $M[H]$ have the same first-order theory (that is, they’re elementarily equivalent).

Definition. If $M \subseteq N$ are countable transitive models of ZFC, then we say $f \in \omega^\omega \cap N$ is a dominating real over N if f dominates every function $\omega \to \omega$ that belongs to M.

Exercise 2.

(a) Prove that the Cohen-real forcing (from Weekend 2 #4 — conditions are finite partial functions $\omega \to \omega$) doesn’t add any dominating reals over the ground model. (Caution: there’s more to this than proving that the generic real is not a dominating real, but that might be a good place to start.)

(b) Prove that if $A \in M$ is a mad family (in M) and $d \in N$ is a dominating real, then A is not mad (i.e., not maximal) in N. (Hint: look at the proof of $b \leq a$.)

Exercise 3 (Weekend 2, #7). Suppose that P is a separative poset in M. Show that the set

$\{\tau \in M^P : \tau[G] = \emptyset \text{ for every } M\text{-generic filter } G\}$

is an element of M, but the set

$\{\tau \in M^P : \tau[G] = \emptyset \text{ for some } M\text{-generic filter } G\}$

is not. (Hint: Think about P-rank.)

Exercise 4. ($*$) Assume CH. Prove that there is an infinite mad family $A \subseteq [\omega]^\omega$ that remains mad in $M[G]$ for any G that is Cohen-generic over M. (The poset here is the poset of finite partial functions $\omega \to \omega$ again.)

Email Zach if you have questions or need a hint.

Date: 26 July 2016.