INTEGRATION BY PARTS AND TRIG SUBSTITUTION

ZACH NORWOOD

1. STANDARD BY-PARTS INTEGRALS

These are the integrals that will be automatic once you have mastered integration by parts. In a typical integral of this type, you have a power of x multiplied by some other function (often e^x, $\sin x$, or $\cos x$). Let u be the power of x and v' be the other function so that integrating by parts decreases the power of x.

Example 1. Compute $\int x \sin x \, dx$.
We use the substitution $u = x$ $v = -\cos x$ $u' = 1$ $v' = \sin x$.

Then integrate by parts:

$$\int x \sin x \, dx = -x \cos x - \int (-\cos x) \, dx = -x \cos x + \sin x + C.$$

Other examples of integrals of this type:

- $\int x^2 e^x \, dx$
- $\int (2x)^2 \cos x \, dx$
- $\int x \sin(2x) \, dx$

Don’t be frightened by the constants. They don’t affect the method at all: you integrate $\int x^2 \cos x \, dx$ and $\int (3x/2)^2 \cos(3x) \, dx$ using the same method; the constants are just different.

2. TRICKY BY-PARTS INTEGRALS

What makes these integrals strange is that setting $v' = 1$ is often a good idea. Also, the integrand is often not a product, as you will see in these examples.

Example 2. Compute $\int \ln(x) \, dx$.
We use the substitution $u = \ln(x)$ $v = x$ $u' = \frac{1}{x}$ $v' = 1$.

Then integrate by parts:

$$\int \ln(x) \, dx = x \ln(x) - \int x \frac{1}{x} \, dx = x \ln(x) - \int dx = x \ln(x) - x + C.$$

In that example, somehow the extra factor x you get by integrating $v' = 1$ cancels out with $u' = \frac{1}{x}$ nicely.

Example 3. Compute $\int \arcsin(x) \, dx$.
We use the substitution $u = \arcsin x$ $v = x$ $u' = \frac{1}{\sqrt{1 - x^2}}$ $v' = 1$.

Date: October 25, 2012.
Then integrate by parts:

\[\int \arcsin x \, dx = x \arcsin x - \int \frac{x}{\sqrt{1-x^2}} \, dx. \]

The integral on the right is a typical \(u \)-substitution integral. Set \(u = 1 - x^2 \) to get \(du = -2x \, dx \) and

\[\int \frac{x}{\sqrt{1-x^2}} \, dx = -\frac{1}{2} \int \frac{du}{\sqrt{u}} = -\frac{1}{2} \int u^{-1/2} = -\sqrt{u} + C = -\sqrt{1-x^2} + C. \]

Plug this result back into equation (1) to get

\[\int \arcsin x \, dx = x \arcsin x - (-\sqrt{1-x^2}) + C = x \arcsin x + \sqrt{1-x^2} + C. \]

This didn’t work out quite as nicely as Example 2 did, but the \(x \) we got by integrating \(v' = 1 \) served as (part of) the \(du \) in our substitution.

For another tricky by-parts integral, try \(\int (\ln x)^2 \, dx \).

3. Sneaky by-parts integrals

The main example of this type of integral is the following:

Example 4. Compute \(\int e^x \cos x \, dx \).

We use the substitution

\[u = e^x \quad v = \sin x \]
\[u' = e^x \quad v' = \cos x. \]

Then integrate by parts:

\[\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx. \]

Someone who’s paying attention to what (s)he is doing at this point might say, ‘Well, we haven’t gotten anywhere, since \(\int e^x \sin x \, dx \) is no easier than the integral we started with!’ That’s a reasonable response, but let’s charge ahead anyway. Use another substitution for the integral on the right:

\[u = e^x \quad v = -\cos x \]
\[u' = e^x \quad v' = \sin x. \]

Integrating by parts a second time gives

\[\int e^x \cos x \, dx = e^x \sin x - (-e^x \cos x + \int e^x \cos x \, dx) = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx. \]

Here’s where the sneakiness comes in. The integral on the far right is now our original integral, so we can add it to both sides and divide by 2 to get a formula for the original integral!

\[2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x + C, \]

and dividing by 2 gives

\[\int e^x \cos x \, dx = \frac{1}{2}(e^x \sin x + e^x \cos x) + C. \]

This phenomenon is difficult to replicate (other than in obvious variants of the example, like \(\int e^x \sin x \, dx \) or \(\int e^{(2x)} \sin(3x) \, dx \)). As a result, most problems that require this sneaky trick will look like \(\int e^x \cos x \, dx \) or \(\int e^x \sin x \, dx \) (possibly with extra constants, of course). (One important exception is \(\int \sec^3 x \, dx \), though; see below.)
4. Trig integrals

Before we do some nastier by-parts integrals, we need to learn some trig integrals. First, an example that you’ve known how to do for a while:

Example 5. Compute \(\int \sin^3 x \cos x \, dx \).

We notice that the substitution \(u = \sin x \), \(du = \cos x \, dx \) simplifies the integral considerably:

\[
\int \sin^3 x \cos x \, dx = \int u^3 \, du = \frac{u^4}{4} + C = \frac{\sin^4 x}{4} + C.
\]

Example 6. Compute \(\int \sec x \, dx \).

5. Extra tricky (and sneaky) by-parts integrals

Example 7. Compute \(\int \sec^3 x \, dx \).

6. Exercises

When you’ve mastered the examples in the previous few sections, try these:

1. \(\int \sin \sqrt{x} \, dx \).
2. \(\int x \ln x \, dx \).
3. \(\int \frac{1}{t - \sqrt{1 - t^2}} \, dt \).
4. \(\int \arcsin \sqrt{x} \, dx \).
5. \(\int \frac{1}{x^4 + 4} \, dx \).
6. \(\int \sin(\ln x) \, dx \).
7. \(\int \cos x \ln(\sin x) \, dx \).
8. \(\int \sin x \ln(\sin x) \, dx \).