Exercise 1: Consider two laser beams, one shining along the ray \(\mathbf{r}_1(t) = (1, 2, 4) + t(2, 1, -1) \), the other other along the ray \(\mathbf{r}_2(t) = (6, 3, -1) + t(-5, 2, c) \). For what value(s) of \(c \) do the two laser lines intersect?

Exercise 2: Consider the cylinder \(x^2 + y^2 = 1 \) and the sphere \(x^2 + y^2 + z^2 = r^2 \) in \(\mathbb{R}^3 \). Describe the intersection of the sphere and cylinder if (a) \(r > 1 \), (b) \(r = 1 \), and (c) \(0 < r < 1 \).

Exercise 3: Viviani’s Curve Find the intersection of a cylinder (radius \(r \)) tangent to a sphere (radius \(R > r \)). The equation of the sphere is

\[
x^2 + y^2 + z^2 = R^2,
\]

and the cylinder is

\[
y^2 + (x - (R - r))^2 = r^2.
\]

Hint: Points on the intersection satisfy the equations of both surfaces. Writing \(y \) and \(z \) in terms of \(x \) (or any two variables in terms of the third) is a complete description of the intersection.

Exercise 4: Use the properties of the dot product to prove the triangle inequality,

\[
||\mathbf{v} + \mathbf{w}|| \leq ||\mathbf{v}|| + ||\mathbf{w}||.
\]

Hint: Consider \((||\mathbf{v} + \mathbf{w}||)^2\) and \((||\mathbf{v}|| + ||\mathbf{w}||)^2\) separately.