Math 33B Differential Equation
Instructor: Dr. Leif Zinn
TA: Ziheng Ge Zihengge@math.ucla.edu.
Office hour: 10:00-11:00 am, Tue NS 6118
Notice:
1. Worksheet is collected and graded after class every week (after this week).
2. Please don’t ask me about homework, because I don’t grade them.
3. Any questions and suggestions about this class is welcomed. Feel free to send me email or make an appointment.

Today’s discussion note:
- A brief review of 32A and 32B.
 32A 32B
 (Differentiation) (Integration).
 • Vector valued functions • Line integral
 • Curve geometry • Surface integral
 • Multivariable functions • Double/triple integral
 • Contour plot.
- Introduction to differential equation.
 \[
 \frac{dy}{dt} = f(t,y), \quad y(0)=2
 \]
 1. If \(f=f(t) \), \(y(t)=f(t) \Rightarrow y(t)=y(0)+\int_0^t f(t)\,dt \).
 Turns into an integration problem.
 Initial value is necessary for solution.
 2. If \(f(t,y)=y-1 \), separate variables.
 \[
 \frac{dy}{dt} = y-1 \Rightarrow \frac{dy}{y-1} = dt \Rightarrow \log\frac{y}{y-1} = t+
 \]
 \(y(t) = 1 + e^{t(y(0)-1)} \).
 Solution is exponential function.
3. \(f(t, y) = (y-1)^2 \)

\[
\frac{dy}{dt} = (y-1)^2 \Rightarrow \frac{dy}{(y-1)^2} = dt = -\frac{1}{y-1} dt \\
\therefore \quad y(t) = 1 + \frac{1}{y-1} t
\]

Say \(y(0) = 2 > 1 \), then \(y(t) = 1 + \frac{1}{1-1} t = 1 - \frac{2}{t-2} \).

Solution explodes at \(t = 1 \).

That means the rate of decreasing goes to infinity, as \(t \to \infty \).

Now let's see some classification of differential equations

1. **Ordinary** --- \(\frac{dy}{dt} = f(t, y) \).

 ODE \(\frac{dy}{dt} = f(t, y, y', y'', \ldots, y^{(m)}) \).

2. **Partial** --- \(\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2} \) heat equation.

 PDE \(\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2} \) wave equation

 \(\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} = f \) Poisson equation.

This class will focus on ODE.

3. **Scalar equation** --- \(\frac{dy}{dt} = f(t, y) \)

4. **System of equation** --- \(\frac{dy_1}{dt} = f(t, y_1, y_2, \ldots, y_m) \)

5. **Normal form** of scalar equation.

 \(\frac{dy}{dt} = f(t, y, y', y'', \ldots, y^{(m)}) \)

6. **General form** of scalar equation.

7. \(n \) is called "order" of equation.

 e.g. \(\frac{dy}{dt} = 2y \frac{dy}{dt} + y^2 \) is second order.

 \(\frac{dy}{dt} = y - 1 \) is first order.
Now we come to first order equation.

Normal form: \(y' = f(t, y) \)

A geometric view of first order equation is direction field. \(f(t, y) \) is plotted as slope of \(y \).

\[\frac{dy}{dt} = y \]

Given any initial value \(y(0) \), we can plot the solution curve by following the direction field.

\[\frac{dy}{dt} = 1 - y^2 \]

First we notice there are two constant solutions:

\(y(t) = -1 \) and \(y(t) = 1 \).

From solution curves we can see,

\(y(t) = -1 \) is not "attractive", but \(y(t) = 1 \) is "attractive".