
Logic, Methodology and 
Philosophy of Science 

Proceedings of the 14th International 
Congress (Nancy) 

 
Logic and Science Facing the 

New Technologies 
 

Edited by 

Peter Schroeder-Heister, 
Gerhard Heinzmann, 

Wilfrid Hodges, 
and 

Pierre Edouard Bour 
 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 

©  Individual author and College Publications 2014 
All rights reserved. 
 
ISBN 978-1-84890-169-8 
 
College Publications 
Scientific Director: Dov Gabbay 
Managing Director: Jane Spurr 
 
 
http://www.collegepublications.co.uk 
 
 
 
 
Printed by Lightning Source, Milton Keynes, UK 
 
 
All rights reserved.  No part of this publication may be reproduced, stored in a 
retrieval system or transmitted in any form, or by any means, electronic, mechanical, 
photocopying, recording or otherwise without prior permission, in writing, from the 
publisher. 
 



On the Church-Turing Thesis and

Relative Recursion

Yiannis N. Moschovakis

1 Introduction

The Church-Turing Thesis is the claim that for every function f : Nn → N

on the natural numbers N = {0, 1, . . .},

CT: f is computable ⇐⇒ f can be computed by a Turing machine.

It implies that for every relation R on the natural numbers or (via an effec-
tive coding) on the set Λ∗ of strings from some finite alphabet Λ,

R is decidable ⇐⇒ its characteristic function is Turing computable.

CT was postulated (in different but equivalent forms) by (Church 1935;
1936b;a) and (Turing 1936), who applied it immediately to prove the un-
decidability of provability in first order logic. This solved the classical
Entscheidungsproblem—or showed that it was “unsolvable”, depending on
your point of view; and similar invocations of CT have been used to es-
tablish some of the most important applications of logic to mathematics
and computer science in the 20th century, including the unsolvability of
Hilbert’s 10th problem by Matiyasevich (after Davis, Putnam and Robin-
son), the construction of finitely generated, finitely presented groups whose
word problem is unsolvable (Novikov and Boone), etc.

There was some initial scepticism (cf. (Moschovakis 1968)), but there is
no doubt that the Church-Turing Thesis is almost universally accepted to-
day, so much so that it is usually invoked with no explicit mention. At the
same time, foundational questions about its epistemological status and what
exactly it means continue to generate considerable discussion: is it a “log-

P. Schroeder-Heister, G. Heinzmann, W. Hodges, and P. E. Bour (eds.), Logic, Method-
ology and Philosophy of Science. Proceedings of the Fourteenth International Congress
(Nancy), 179–200. 2014.



180 Yiannis N. Moschovakis

ical”, a “mathematical” or an “empirical truth”? And more significantly:
can it be proved from simple, plausible assumptions?1

It is not my purpose here to give another proof of CT or a critical analysis
of the arguments that have been given for it—a daunting task, given the
vast material published on the problem. My aim is to introduce and discuss
the Thesis on Relative Recursion RRT, a principle which is related to but
very different from CT, not only in content but in kind; and to show that CT
can be reduced to the conjunction of RRT and a nearly universally accepted
view of what the natural numbers are. The move shifts the discussion about
the meaning and truth of CT to the corresponding questions about RRT,
which (I think) are substantially simpler.

The brief, last paragraph 8.1 summarizes what I believe is achieved in
this article.

1.1 About algorithms

It is often assumed that CT is equivalent to

CT∗ : f : Nn → N is computable by an algorithm

⇐⇒ f can be computed by a Turing machine.

This is, in fact, how (Church 1936b) formulates CT, although the ear-
lier (Church 1935) and (Turing 1936) do not mention algorithms.

We have direct intuitions about algorithms which can be brought to bear
in discussing CT, as it is natural to assume that

(1) if some algorithm computes a function f , then f is computable.

However, it can be (and has) been argued that we also have independent,
direct intuitions about functions on the natural numbers which are com-
putable by finite means in Turing’s words. In other words, it may well be
that CT and CT∗ are both true but they do not have the same meaning,
and so arguments in favor of one of them do not necessarily apply to the
other. For example: arguments for CT often depend on assumptions about
the (natural) primitives of computation, while arguments for CT∗ are nat-
urally grounded on explications of what algorithms are, which is a difficult
(and controversial) subject.

I take (1) to be obviously true, if it is understood correctly, and so algo-
rithms will come up naturally and often in the sequel. However: I take CT

to be the “official” version of the Church-Turing Thesis, and I will refrain

1Cf. (Gandy 1980; 1995), (Sieg 2002), (Kripke 2000) (which is a recording), (Der-
showitz & Gurevich 2008) and the large bibliographies in these papers.



On the Church-Turing Thesis and Relative Recursion 181

from discussing in any serious way the difficult problem of explicating the
notion of algorithm; this is not what this article is about.2

2 Preliminary remarks,

on three issues which bear on our understanding of the Church-Turing
Thesis.

2.1 The primitives of computation

(Turing 1936) starts with

the “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite
means,

and then he argues (mostly) in the last Section 9 that his “computing ma-
chines” capture the natural notion of “calculability”. His reasoning is driven
by the following statement in the first paragraph of Section 9:

The real question at issue is “What are the possible processes
which can be carried out in computing a [real] number?”

The elementary operations that Turing machines can do involve manipu-
lating tapes with symbols on them, and they are most directly understood
as operations on (finite) strings of symbols. Turing argues that all im-
mediate string operations (which intuitively can be effected in one step)
can be simulated in finitely many steps by those basic, Turing machine
operations. His arguments “are bound to be, fundamentally, appeals to
intuition”, he says, “and for this reason rather unsatisfactory mathemati-
cally”. They are, however, very persuasive and were pivotal in securing the
quick acceptance of CT. Gandy’s seminal 1980 calls Turing’s analysis an
“outline of a proof” of3

2I think that the problem of giving a rigorous, mathematical definition of algorithms
is very important for the foundations of the theory of computation and has not received
the attention it deserves. For my own ideas about it, see (Moschovakis 1998), and for
alternative proposals cf. (Gurevich 2000), (Dershowitz & Gurevich 2008) and (Tucker &
Zucker 2000).

3 (Gandy 1980) gives an alternative understanding of CT which limits computability
by arbitrary mechanical devices, and then gives an explication of what these are and bases
on it a proof of CT. Physics enters the picture and CT becomes an empirical proposition,
burdened by the usual problems: what if, in some distant future, someone builds a Higgs
boson machine which can use God as an oracle and get answers to arbitrary mathematical
questions, perhaps by doing subtle experiments? (Kripke 2000) argues (in a more serious
vein) that the empirical understanding of CT is problematic and impossible to settle
without a great deal more knowledge about physical laws than physicists have today.
He concludes that CT is most coherently understood as a mathematical proposition and



182 Yiannis N. Moschovakis

Theorem T. What can be calculated by an abstract human being
working in a routine way is [Turing] computable.

2.2 Symbolic computation

Built into this picture of the “mindless clerk” scribbling away is the principle
that all computation is symbolic, which is why the primitives of computation
are assumed to be operations on strings of symbols. This is a plausible (and
popular) slogan which, however, merits some discussion. We will return to
it further down.

2.3 Input and output

(Church 1936b) formulates CT in the form CT∗ above, at least by the words
he uses:

. . . every function, an algorithm for the calculation of the values
of which exists, is effectively calculable [∼ Turing computable].

He then goes on to explain that for a function F (n) of one positive integer,

an algorithm consists in a method by which, given any pos-
itive integer n, a sequence of expressions (in some notation)
En1, En2, . . . , Enrn can be obtained; . . . [and in the end] the fact
that the algorithm has terminated becomes effectively known
and the value of F (n) is effectively calculable. . . . If this inter-
pretation or some similar one is not allowed, it is difficult to see
how the notion of an algorithm can be given any exact meaning
at all.

So Church’s rather restricted understanding of “algorithms” invokes again
this “all computation is symbolic” principle, albeit somewhat more loosely
than Turing’s. But I want to stop here on this innocent

given any positive integer n . . .

Exactly how is a positive integer n given? Perhaps Church has in mind
the rather complex numeral for n of the untyped λ-calculus or, more likely,
the term Sn(0) in Herbrand-Gödel-Kleene systems of equations, the unary
representation of n. But why not use binary notation, as is routinely done
today? Or, for that matter, why not “give n” to the algorithm by cod-
ing the value F (n) in the syntactic expression En1, rendering all further
computation redundant?

outlines a proof of it, elaborating on arguments which are (at least implicit) in (Turing
1936) and (Church 1936b). I will not go into this reasoning here, but I also understand
CT as a mathematical proposition on more basic grounds: it refers essentially to the
natural numbers, and so its truth or falsity depends on what they are.



On the Church-Turing Thesis and Relative Recursion 183

The joke is old and worn out, but it makes the point: if we are to un-
derstand all computation as symbolic, then in addition to identifying the
string primitives which our (human or mechanical) computing machine can
call directly, we must also specify an input function which turns a “given n”
into a string and also an output function which decodes the required value
from the contents of the tape when the machine stops; and to prove CT, we
must argue that these input and output functions are “effective”—in fact
“immediately effective”—without benefit of the Church-Turing Thesis.4

3 Mathematical algorithms

To understand better the connection between algorithms and computability
expressed by (1), we discuss briefly two well known, classical algorithms and
a simple recursive process which is a variation on many popular themes.

3.1 The Euclidean algorithm (before 300 BC)

For a, b ∈ N = {0, 1, . . .}, a, b 6= 0,

gcd(a, b) = the largest number which divides both a and b.

It is easy to check that if for a, b 6= 0, rem(a, b) is the remainder of a by b,
the unique number r such that for some q ∈ N

(2) a = qb + r and 0 ≤ r < b,

then

(3) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b)).

This is the basic mathematical fact about the greatest common divisor func-
tion, it defines it implicitly, and it expresses a recursive algorithm for com-
puting it using iterated division:5

4(Turing 1936) avoids these problems by using machines with no input which compute
(the decimal expansions of) real numbers and reading the (infinite) output from the
digits “emitted” during the computation; but he would surely need to face up to them
to “investigate computable functions of an integral variable” in much the same way, as
he says he can do.

5Euclid defines first the so-called subtractive Euclidean algorithm which uses anthy-
pheresis

A(x, y) = (max(x, y)−min(x, y),min(x, y)),

an operation on unordered pairs of numbers which was very important in Greek mathe-
matics. The relevant recursive equation now is

gcd(x, y) = if (x = y) then x else gcd(A(x, y)),



184 Yiannis N. Moschovakis

if rem(a, b) = 0, give output b,
otherwise replace (a, b) by (b, rem(a, b)) and repeat.

The important mathematical facts about the Euclidean algorithm are the
following:

(a) Correctness : for all non-zero a, b ∈ N, the Euclidean terminates and
yields gcd(a, b).

(b) Primitives : The Euclidean is an algorithm on N from rem and =0

(equality with 0).

(c) Complexity : if calls(a, b) is the number of calls to rem that the Eu-
clidean makes to compute gcd(a, b), then

calls(a, b) ≤ 2 log2(b) (for a ≥ b ≥ 2).

We might be tempted to define calls(a, b) as the number of divisions the
algorithm makes to compute gcd(a, b), the basic division algorithm being
the most obvious way to get at the remainder. But there is nothing in the
specification of the Euclidean (by the recursive equation (3)) which tells
us how rem(x, y) must be obtained whenever it is needed: there might, in
fact, be some fast division algorithm which is more efficient than the usual
division process (as fast multiplication is more efficient than the elementary
school algorithm for multiplication), or even some very clever, still unknown
method which gets rem(x, y) very quickly without also computing the quo-
tient of x by y. None of that matters to the Euclidean which simply needs
rem(x, y) for various pairs x, y in the process of computing gcd(a, b); this
is why we say that the Euclidean is an algorithm from rem and =0 rather
than “from division and =0”.

There is a large number of extensions and generalizations of the Euclidean
algorithm, from which we mention here just two, also known to the Greeks
before Euclid’s time.

The Euclidean on positive real inputs

The division equation (2) holds for positive real numbers a, b ∈ R+ = {x ∈
R | x > 0} and determines a unique integer quotient q = iq(a, b) ∈ N and
remainder rem(a, b) ∈ R. It follows that the basic recursive equation (3)
makes sense when a, b ∈ R+ and expresses (as before) an algorithm on pairs

and so the subtractive Euclidean is an algorithm from = and A. Later on he switches
to our version of the Euclidean without much comment, most likely thinking that the
subtractive version simply “implements” division by “iterated subtraction”.

Perhaps more importantly, Euclid defines his algorithms using iteration (like modern
while programs) rather than recursive equations. The relation between iterative and
recursive algorithms is important but subtle and I will not discuss it in this article,
cf. (Moschovakis 1998).



On the Church-Turing Thesis and Relative Recursion 185

from R+, except that in this case the computation may go on forever, so
that this algorithm computes a partial function6 on R+ × R+ with values
in N; moreover

(4) the Euclidean terminates on a, b ∈ R
+

⇐⇒ a and b are commensurable, i.e.,
a

b
is a rational number,

an important fact known to the Greeks and their basic method for proving
non-commensurability.

The continuous fraction algorithm

The output of the Euclidean on positive reals, when it converges, is not
especially interesting. More basic is the variation of the Euclidean which
applies (3) again on pairs of positive real numbers but outputs the (finite
or infinite) sequence q0, q1, . . . of the quotients produced during the compu-

tation, i.e., the continuous fraction representation of the quotient
x

y
. This

is an algorithm on R+ from rem,=0, iq on R+ and 0, S,Pd,=0 on N, an-
other of the fundamental algorithms of Greek mathematics with important
applications in number theory.

3.2 The Sturm algorithm (1829)

This computes the number of real roots of a polynomial

(5) p(x) = a0 + a1x + · · · + anx
n

of degree ≤ n with real coefficients in a real interval (b, c). It operates
on tuples (a0, . . . , an, b, c) of real numbers and its primitives are the field
operations 0, 1,+,−, ·,÷ and the ordering ≤ of R. A simple elaboration of
it decides the relation

R(a0, . . . , an) ⇐⇒ (∃x ∈ R)[a0 + a1x + · · · + anx
n = 0].

The main subroutine of the Sturm algorithm is a version of the Euclidean,
applied to the space of real polynomials of degree ≤ n and with a (critical)
twist, in which the remainder r(x) at each step is replaced by −r(x). It is
an important algorithm and the main algebraic fact extended and used by
(Tarski 1951) in his famous proof of the decidability of the first order theory
of R as an ordered field.

6A partial function f : X ⇀ Y is an ordinary function f : X0 → Y on some arbitrary
X0 ⊆ X, the domain of convergence of f . As usual, f(x) ↓ ⇐⇒ x ∈ X0, f(x) ↑ ⇐⇒
x /∈ X0, and for f1, f2 : X ⇀ Y ,

f1(x) = f2(x) ⇐⇒ [f1(x) ↑ & f2(x) ↑] ∨ f1(x) = f2(x).



186 Yiannis N. Moschovakis

3.3 The color of leaves

A (finite, rooted, binary, colored) tree is a tuple

T = (T, root, l, r,Leaf,Red),

where T is a finite set; root ∈ T ; Leaf and Red are unary relations on T ;
and

l, r : T \ {x ∈ T | Leaf(x)} ֌ T \ {root}

are injections with disjoint images whose union exhausts T \ {root}. A path
from x0 to xn in T is any sequence (x0, . . . , xn) such that for each i < n,
xi+1 ∈ {l(xi), r(xi)}. It follows easily that every node x ∈ T is the endpoint
of a unique path from root, and that every maximal path ends at a leaf.
Set7

(6) R(x) ⇐⇒ every leaf below x is red

⇐⇒ (for every path (x, x1, . . . , xn))[Leaf(xn) =⇒ Red(xn)].

The basic mathematical fact about this relation is the equivalence

(7) R(x) ⇐⇒ if Leaf(x) then Red(x) else [R(l(x) & R(r(x))];

and as with the Euclidean, it expresses a recursive algorithm for deciding
R(x):

if Leaf(x), output the truth value of Red(x),
otherwise decide R(l(x)) and R(r(x)) using the same procedure

and output the Boolean product R(l(x)) & R(r(x)).

This is an abstract version of many standard, recursive (divide-and-conquer)
algorithms, including the merge-sort.8 It operates on the set T and its
primitives are those of the structure T, i.e., root, l, r,Leaf and Red.

7This is a simplified version of the example in the basic article (Tiuryn 1989), which
separates non-deterministic from deterministic recursive computability and also full re-
cursion from tail recursion, i.e., iteration.

8The merge-sort orders (alphabetizes, sorts) finite sequences from a set L with respect
to a given ordering of L, and is asymptotically optimal for the number of comparisons it
needs to do the job. Its optimality among sorting algorithms (of the appropriate kind) is
probably the only lower bound result proved in every introductory course in Computer
Science, and so a discussion of it can be found in any standard, introductory text. See
(Moschovakis 1998) for a discussion of its significance for the foundations of the theory
of algorithms.



On the Church-Turing Thesis and Relative Recursion 187

This leaf-color algorithm can also be applied when T is infinite. In this
case, the computation described terminates only on the well founded part
of T

WF(T) = {x ∈ T | (∃n)[every path from x has length ≤ n]}

and decides correctly the relation R on WF(T).9

In a second variation we consider arbitrary, well founded binary trees,
i.e., structures of the form

T = (T,Roots, l, r,Leaf,Red)

where Leaf and Red are as above; Roots ⊆ T is a non-empty set of roots ;

l, r : T \ {x ∈ T | Leaf(x)} ֌ T \ Roots

are injections with disjoint images; every x ∈ T occurs on some path which
starts with a root; and there are no infinite paths. Now WF(T) = T and
the algorithm terminates for every x and decides whether all the (finitely
many) leaves below x are red.

4 Computing on an arbitrary set from specified
primitives

The algorithms in Section 3 are very different from those envisioned
by Church or expressed by Turing machines. Some of their important fea-
tures are:

(I) Arbitrary universe: They operate on sets other than N or the strings
from some finite alphabet: the real numbers for the variations of the Eu-
clidean and the Sturm and an arbitrary finite or infinite set T for the leaf-
color algorithm and its variations.

In particular, the computations defined by them are not “symbolic”.

(II) No input function: They operate directly on their arguments, i.e.,
there is no intermediary of an input or an output function.

(III) Use of arbitrary primitives : They can use (call) specified primitives
(constants, functions and relations) on their domain of application which
need not be (and often are not) intuitively effectively computable. For
example, the Sturm uses the inequality relation on R which is not decidable
in any meaningful sense, and the second variation of the leaf-color algorithm
operates on an arbitrary set T , for which it does not make sense to ask
whether the primitives Roots, l.r. . . . are effective—they are just given.

9By König’s Lemma, x ∈ WF(T) exactly when no infinite path starts from x.



188 Yiannis N. Moschovakis

One might argue that the specifications we gave in (3) and (7) are not
precise or at least not complete, and they do not meet today’s standard of
rigor unless they are complemented by directions for how to “implement”
them. This is one of many legitimate issues which make the foundational
problem of explicating the notion of algorithm subtle (and even controver-
sial). But this is not our issue here: what we will do in the next section
is to extract from the robust intuitions behind these classical algorithms a
precise notion of computability from arbitrary primitives for functions and
relations on arbitrary sets. This is a natural and useful notion, and we
will show in Section 8 that it is closely—and usefully—related to the kind
of computability on the natural numbers that the Church-Turing Thesis is
about.

5 Recursion in an arbitrary partial structure

We outline here very briefly the basic definitions of recursion in first or-
der structures, for the sake of completeness. A full exposition of the
(much richer) recursion in a many-sorted, functional structure is given in
(Moschovakis 1989), and a summary of a mildly restricted case is included
in (van den Dries & Moschovakis 2004).

It is convenient to think of a relation R ⊆ An as a function R : An →
{T,F} and of an element c ∈ A as a nullary function with value c. This
makes it natural to also allow partial relations R : An ⇀ {T,F}, and so to
deal uniformly with (partial) functions, relations and objects.

With these conventions, a vocabulary (signature) is a tuple

Φ = (φ0, . . . , φk)

of function symbols, together with two functions, arity and sort, which
assign to each φi its arity, the number of arguments that it expects, and its
sort, the kind of values it takes, ind or boole; and a (partial) Φ-structure
is a tuple

A = (A,Φ) = (A, φA
0 , . . . , φ

A
k )

where each φA
i is a partial constant, relation or function on the universe A

of the appropriate arity and sort, e.g., if arity(φi) = n and sort(φi) = ind,
then

φA
i : An ⇀ A.

The A-terms (with parameters and conditionals) are defined by the re-
cursion

E :≡ T | F | x | vj | φi(E1, . . . , En) | if E0 then E1 else E2



On the Church-Turing Thesis and Relative Recursion 189

where x is any member of A; {v0, v1, . . .} is a fixed sequence of variables
of sort ind; arity(φi) = n and E1, . . . , En are of sort ind; and in the con-
ditional, E0 is of sort boole and sort(E1) = sort(E2). The definition also
assigns to each term its parameters (the members of A which occur in it),
its variables, and in the obvious way, its sort. The sort of the conditional
construct is sort(E1) (= sort(E2)).

A term is closed if it has no variables and a pure Φ-term if it has no pa-
rameters. We use the customary notation for substitution: if E(u1, . . . , un) is
a term in which the distinct variables u1, . . . , un may occur and u1, . . . , un ∈
A, then E(u1, . . . , un) is the result of replacing in E each ui by ui.

The denotations of closed A-terms are defined as one might expect:

den(T) = T, den(F) = F, den(x) = x,

den(φi(E1, . . . , En)) = φA
i (den(E1), . . . , den(En)),

den(if E0 then E1 else E2) = if den(E0) then den(E1) else den(E2).

We write den(A, E) if it is important to specify the structure in which
the denotation is computed, and we note that den(A, E) need not always
converge, because we have allowed partial functions in Φ.

Recursive (McCarthy) programs

An n-ary (deterministic) recursive Φ-program10 E is a syntactic expression

(8) E ≡ E0(~x,~p) where {p1(~u1) = E1(~u1,~p), . . . , pk(~uk) = Ek(~uk,~p)}

where the following conditions hold:

(RP1) ~p ≡ p1, . . . , pk is a sequence of distinct function and relation symbols
which do not occur in Φ. These are the recursive variables of E.

(RP2) For i = 0, . . . , k, the part Ei(~ui,~p) of E is a pure term (no parameters)
in the vocabulary Φ ∪ {p1, . . . , pk} whose variables are in the list ~ui
(where by convention, ~u0 ≡ ~x ≡ x1, . . . , xn).

(RP3) For i = 1, . . . , k, sort(Ei) = sort(pi).

10Deterministic recursive programs were introduced by (McCarthy 1963), who used
them to develop clean foundations for call-by-value computability from arbitrary, speci-
fied primitives. Especially significant was McCarthy’s explicit identification of the condi-
tional (branching) as an essential ingredient of computation: he used it to give an elegant
characterization of the general recursive functions on N which avoids the non-determinism
inherent in the Herbrand-Gödel-Kleene systems of (Kleene 1952).



190 Yiannis N. Moschovakis

The sort of E is the sort of its head term E0(~x,~p); the free occurrences of
variables of E are the occurrences of x1, . . . , xn in its head; and its bound oc-
currences of variables are those in the lists ~ui in its body and all occurrences
of p1, . . . , pk.

For example,

(9) E ≡ p(x, 0) where {p(x, y) = if (φ(x, y) = 0) then y else p(x, S(y))}

is a program in the vocabulary {0, S, φ,=0} of sort the sort of p, with x free
in its first occurrence and bound in its occurrence in the body and y and p

bound in all their occurrences.

The body of a recursive program E specifies a system of mutually recur-
sive equations in the partial function variables p1, . . . , pk. The denotation
of a recursive program E in a Φ-structure A is obtained, intuitively, by
“solving” this system and then substituting the solutions into the head E0

of E.

More precisely, the parts of E can be evaluated in expansions

(A, p1, . . . , pk) = (A,Φ, p1, . . . , pk)

of a Φ-structure A by arbitrary partial functions of the correct arity and
sort, and they define the following system of recursive equations on A:

p0(~x) = den((A, p1, . . . , pk), E0(~x, ~p)),

p1(~u1) = den((A, p1, . . . , pk), E1(~u1, ~p)),

...

pk(~uk) = den((A, p1, . . . , pk), Ek(~uk, ~p)).

The expressions on the right of these equations define partial functions
which are monotone and continuous in their partial function arguments,
and so by a standard set theoretic construction the system has a least tuple
of solutions

p0, p1, . . . , pk;

the denotation of E in A is then the partial function of the appropriate sort
defined by the head,11

fA
E = p0 : An ⇀ A if sort(E0) = ind and

11 In many cases, E0(~x,~p) ≡ p1(~x), so that fE = p1, i.e., the function computed by E
is simply the first of the mutual fixed points of the system determined by the body of E.



On the Church-Turing Thesis and Relative Recursion 191

fA
E = p0 : An ⇀ {T,F} if sort(E0) = boole.

Finally, a partial function or relation is A-recursive or recursive from the
primitives Φ of A if it is computed in A by some deterministic recursive
program, and we set

rec(A) =rec(A,Φ)

=the set of all partial functions and relations which are

recursive inA.

If S and Pd are the successor and predecessor functions on N, then

(10) f ∈ rec(N, 0, S,=) ⇐⇒ f ∈ rec(N, 0, S,Pd,=0)

⇐⇒ f is Turing computable.

This was one of the first results about Turing computability, albeit some-
what differently formulated, and it is often used to infer that a certain f
is Turing computabile by giving a recursive equation or system which com-
putes it.12

6 The Relative Recursion Thesis

It is basically trivial that all algorithms in Section 3 compute (partial) func-
tions or relations which are recursive from the relevant primitives : just turn
the given recursive equation into a recursive program by “formalizing” it
and adding a trivial head, cf. Footnote 11.13 There is also a rich theory of
recursion on arbitrary structures which covers most “intuitive” definitions
of algorithms and claims of computability on abstract sets from specified
primitives. The examples in Sections 4 and 5 do not provide sufficient ev-
idence that all “algorithms” from specified primitives can be expressed by

12For example, if S is the successor on N and φ is total, then the program in (9)
computes in (N, 0, S, φ,=0) the minimalization of φ,

fE(x) = µy[φ(x, y) = 0] = the least y such that φ(x, y) = 0.

This is the key idea in Kleene’s proof that the class of Turing computable functions is
closed under the minimalization operator, perhaps the earliest important connection of
fixed point recursion with Turing computability.

13The continuous fraction algorithm operates on both reals and natural numbers and it
outputs finite or infinite sequences of numbers. In the approach we are taking here, it is
best viewed as an algorithm of the structure (R+,N, iq, rem,=R

0 , 0
N, S,Pd,=N

0 ) with two
universes, which computes the partial function q : R+×R+×N ⇀ N, where qn = q(x, y, n)

is the n’th term in the continuous fraction expansion of
x

y
, defined for all n when x and

y are not commensurable. The reduction of many-sorted recursion to recursion on one
sort (other than boole) is routine, and so is putting down a recursive program which
expresses the continuous fraction algorithm.



192 Yiannis N. Moschovakis

recursive programs, of course, but this is not the issue here; so I will leap
immediately, Church-style,14 to the strongest claim:

The Relative Recursion Thesis

For every function f : An → A or relation f : An → {T,F} on a set A and
any set of primitives Φ on A,

RRT: f is computable from Φ

⇐⇒ f is recursive in the structure A = (A,Φ).

As with CT, the “easy” direction (⇐) of RRT can be proved by imple-
menting recursive programs using oracles to represent the primitives; one
needs to appeal only to simple and non-controversial properties of algo-
rithms from primitives on an arbitrary set and to assume that some basic
operations on finite sequences are intuitively effective, much as Turing does
for the easy direction of CT. A proof of the non-trivial direction (⇒) would
require showing that all computation from primitives can be reduced to
calling (composition), branching and mutual recursion. This is possibly a
simpler task than what is needed to prove CT, but I do not see now how to
go about it.15

7 Logical notions and propositions

(Tarski 1986) gave a famous explication of logical notions, by “applying” to
logic Felix Klein’s classical Erlangen Program for classifying geometries. We
give here a (very) abbreviated and somewhat simplified version of Tarski’s
definitions with the aim to show that the Relative Recursion Thesis RRT is
a logical proposition, of a very different kind than CT.

The simple type structure over a set A

For every non-empty set A, set

T0(A) = A, Tn+1(A) = P(Tn(A)) = the set of all subsets of Tn(A),

where A is viewed as a set of individuals (atoms) with no internal set struc-
ture and every member of the type Tn(A) is “tagged” with n, so that every
object in these sets belongs to exactly one Tn(A), n being its type. We set

x ∈n y ⇐⇒ x ∈ y ∈ Tn+1, T
∗(A) =

⋃

n Tn(A), T∗(A) = (T ∗(A), {∈n}n).

14I have heard it said that Church claimed his version of CT as soon as Kleene proved
that the predecessor function on N is λ-definable. Kleene took a little longer to believe
it.

15The best arguments I know which support RRT come from the analysis of the notion
of algorithm in (Moschovakis 1998).



On the Church-Turing Thesis and Relative Recursion 193

This is the simple type structure above A.

We can use standard, set-theoretic constructions to identify in T ∗(A)
much more complex objects than typed pure sets (of sets of sets . . . of mem-
bers of A). For example, using the Kuratowski pair,

x, y ∈ Tn(A) =⇒ (x, y) = {{x}, {x, y}} ∈ Tn+2(A),

which gives us the Cartesian product

x, y ∈ Tn+1(A) =⇒ x× y = {(u, v) | u ∈ x & v ∈ t} ∈ Tn+3(A)

of two sets in the same type; and iterating the process as usual, we get
k-fold products, relations and (partial and total) functions of any arity, etc.
Moreover, the embedding x 7→ {x} injects each Tn(A) into Tn+1(A), and its
iterates give us simple embeddings

n+k
n : Tn(A) ֌ Tn+k(A)

which “code” each Tn(A) into every larger type. The upshot is that we can
think of any set

X ⊆ Tk1
(A) × · · · × Tkn

(A)

as a member of Tl(A) for any sufficiently large l and operate on these sets
by the standard set operations, union, intersection, etc.16 For example, we
can code truth and falsity in T1(A) by setting

T = A, F = ∅,
and for any n, we can think of the relations

∈n= {(x, y) | x ∈n y}, =n = {(x, y) | x = y ∈ Tn(A)}
as members of Tl(A) for some l, which is not very hard to compute in this
case. More significantly, for what we aim to do, fix a number n and a
vocabulary Φ = (φ0, . . . , φk) and set

(11) Recn(A,Φ) =
{

(f,Φ) | f : An ⇀ A & f ∈ rec(A,Φ)
}

∪
{

(f,Φ) | f : An ⇀ {T,F} & f ∈ rec(A,Φ)
}

,

where Φ = (ϕ0, . . . , ϕk) stands for any tuple of partial functions on A
which have the arities and sorts specified by Φ so that (A,ϕ0, . . . , ϕk) is a
Φ-structure; we can locate (a code of) this set in Tl(A), for every sufficiently
large l (as determined by Φ and n).

16This appeal to codings can be avoided, of course, by adopting a modern, richer
definition of the type structure, with product and function types. We will not do enough
in this brief note to justify the additional machinery, however, and I thought it best to
stick with the simpler, classical definition.



194 Yiannis N. Moschovakis

Logical notions

Every permutation π : A֌→A extends naturally to a permutation π∗ :
Tn(A)֌→Tn(A) by the recursion

π∗(x) = π∗[x] = {π∗(y) | y ∈ x} (x ∈ Tn+1(A)),

and so to T ∗(A); and then, easily, π∗ is an automorphism of the type struc-
ture T∗(A), i.e., it is a bijection of T ∗(A) with itself such that

x ∈n y ⇐⇒ π∗(x) ∈n π∗(y) (x, y ∈ T ∗(A)).

Following (Tarski 1986), a set X ∈ T ∗(A) is logical above A if it is fixed
by every such automorphism, i.e.,

for every permutation π : A֌→A, π∗(X) = X.

The motivation comes from a basic feature of definability: if X ∈ T ∗(A)
is definable (without parameters) in a reasonable language L, then X is
fixed by every automorphism of T∗(A)—and this applies not only to the
natural formal language of type theory, but to every reasonable, precisely
formulated language which is naturally interpreted in T∗(A), including lan-
guages with second and higher order quantifiers, infinitary connectives, etc.
Tarski replaces the elusive search for a characterization of “definability in
some reasonable language” by a rigorous, semantic criterion which should
be satisfied by all definable objects. We can then give rigorous proofs of
logicality and non-logicality :

THEOREM 1 For each n and every vocabulary Φ, the set Recn(A,Φ)
in (11) is logical above A.

Outline of proof.
For any g : Am ⇀ A and any permutation π : A֌→A, let gπ = π∗(g) :

Am ⇀ A and check that

(12) gπ(x1, . . . , xm) = πg(π−1x1, . . . , π
−1xm) (x1, . . . , xm ∈ A).

By a simple exercise in fixed point recursion, for any f, ϕ0, . . . , ϕm,

(13) f is recursive in (A,ϕ0, . . . , ϕk)

⇐⇒ fπ is recursive in (A,ϕπ
0 , . . . , ϕ

π
k );

this implies that the function part of Recn(A) is fixed by π∗, and the cor-
responding argument about relations finishes the proof. �



On the Church-Turing Thesis and Relative Recursion 195

More interesting is the next result about (intuitively understood) com-
putability from arbitrary primitives. We label it a “Claim” rather than
a theorem, because we will appeal in its proof to some assumptions about
“computability from primitives”, which we will not (and cannot) prove with-
out a precise definition.

For each n and each vocabulary Φ, let

(14) Compn(A,Φ) =
{

(f,Φ) | f : An ⇀ A & f is computable from Φ)
}

∪
{

(f,Φ) | f : An ⇀ {T,F} & f is computable from Φ
}

,

where Φ is related to Φ as in the formulation of (11) above.

CLAIM 2 For each n and every vocabulary Φ, the set Compn(A,Φ) in (14)
is logical above A.

Outline of proof.
The key step—and where the intuitions about computability from prim-

itives come in—is the following

Lemma. If some process computes f : An ⇀ A from the primitives
ϕ0, . . . , ϕk on A, then for every permutation π : A֌→A, the same process
computes fπ from ϕπ

0 , . . . , ϕ
π
k .

This yields

(15) f is computable from ϕ0, . . . , ϕk

⇐⇒ fπ is computable from ϕπ
0 , . . . , ϕ

π
k ,

from which the proof of the Claim can be completed as in Theorem 1.

Proof of the Lemma. Suppose α is some kind of process which computes
a partial function f : An ⇀ A from ϕ0, . . . , ϕk. Our basic intuition is that
for any ~y = (y1, . . . , yn) ∈ An, there is a “computation” of α which derives
the value f(~y); that in the course of this computation, α may request
from “the oracle” representing any ϕi any particular value ϕi(u1, . . . , um)
for u1, . . . , um which it has already computed from ~y; and that if the
oracles cooperate and respond to all requests, then the computation of
f(~y) is completed in a finite number of steps. This much is probably
non-controversial, and certainly true of all precisely defined “processes”
(i.e., algorithms) from primitives like those in Section 3, with reasonable,
precise notions of “computation”. We also assume that

the primitives ϕ0, . . . , ϕk are the only non-logical operations used by α,



196 Yiannis N. Moschovakis

which is the most important part of our understanding of “computation
from ϕ0, . . . , ϕk”. It insures that α does not have access to any “hid-
den primitives” other than ϕ0, . . . , ϕk and is again true of all standard
algorithms. This supports the claim that

if we replace the input ~y by π(~y) = (πy1, . . . , πyn) and also
replace every request in the computation for ϕi(u1, . . . , um)
by a request for ϕπ

i (πu1, . . . , πum), we get a computation of
πf(~y) from ϕπ

0 , . . . , ϕ
π
k ; and if we apply this construction to

~y = π−1(~x), then the output is πf(π−1(~x)) = fπ(~x),

which then implies the Lemma. �

More—or less—could be put into this “proof” of Claim 2, which depends
fundamentally on “appeals to intuition” and “for this reason [is] rather
unsatisfactory mathematically”, to use Turing’s words. Or we might just
assume Claim 2 as flowing naturally from the

Basic intuition: Each value f(~x) of a partial function f : An ⇀
A computable from specified primitives, depends in some uni-
form way only on finitely many values of those primitives—and
on nothing else.

We can now claim the basic result of this section:

CLAIM 3 The Relative Recursion Thesis RRT is a logical proposition.

Proof. Without defining logical propositions in general, we just assume
the following which is, I think, quite plausible: if for every m, Xm(A) and
Ym(A) are logical objects over A, then the identity Xm(A) = Ym(A) is
logical over A and the universal closure

(∀m)(∀A 6= ∅)[Xm(A) = Ym(A)]

is a logical proposition. By Theorem 1 and Claim 2, this is exactly the form
of

RRT ⇐⇒ (∀Φ)(∀n)(∀A 6= ∅)[Compn(A,Φ) = Recn(A,Φ)]

once we enumerate all pairs (n,Φ) of numbers and vocabularies. �

8 The punchline

The Relative Recursion Thesis restricts computability on arbitrary sets from
arbitrary, specified primitives and does not say anything directly about
(absolute) computability or recursion on the natural numbers. However:



On the Church-Turing Thesis and Relative Recursion 197

CLAIM 4 A function f : Nn → N or relation f : Nn → {T,F} is com-
putable if and only if f is computable on N from 0, S,=

— because (N, 0, S,=) is just what the natural numbers are.

This is also a Claim rather than a Theorem, because it is grounded on an
assumption about the nature of natural numbers—what they are—which
cannot be proved any more than CT or RRT can be proved.

Very briefly, about a problem which has been discussed as extensively
as any other in the Philosophy of Mathematics since the 1870s, there are
two basic facts about the natural numbers, both due to Frege and (mostly)
Dedekind:

(i) (N, 0, S,=) is a Peano system, i.e., 0 ∈ N, the successor function is a
bijection of N with its non-0 elements, and the Induction Axiom holds, i.e.,
for every X ⊆ N,17

(

0 ∈ X & (∀x ∈ X)[S(x) ∈ X]
)

=⇒ X = N.

(ii) Dedekind’s Theorem: Any two Peano systems are (uniquely) isomor-
phic.

These lead to what I will call

The Standard View. The natural numbers are a Peano system—and
that is all they are.

There are many well-known and much discussed problems with the claim
that the numbers are just a Peano system, some of them stemming from
the fact that there is no natural way to “select” a particular (privileged)
one, cf. (Benacerraf 1965). At the same time, there are also many responses
to this problem, e.g., structuralist or modal approaches, which get around
the problem in various (sometimes very sophisticated) ways. I do think,
however, that the common, starting point for all philosophical views about
the natural numbers are (i) and (ii). This is what I am trying to convey by
saying “and that is all the numbers are”: the idea is that if we derive some
results about the numbers using only the fact that they are a Peano system,
then these results will find a natural expression in any coherent approach
to the foundations of number theory. This should apply to Claim 4, which
can then be used in the proof of the following

THEOREM 5 The Relative Recursion Thesis and the Standard View about
numbers imply the Church-Turing Thesis, i.e.,

RRT + the Standard View =⇒ CT.
17The equality relation = is not usually included in the definition of a Peano system,

but it is implicit in the definition of isomorphism.



198 Yiannis N. Moschovakis

Proof. For the non-trivial direction of CT, suppose f : Nn → N is com-
putable; f is then computable from 0, S,= by the Standard View; and so it
is recursive in (N, 0, S,=) by RRT; and so it is Turing computable by (10).

�

8.1 Concluding remarks

Theorem 5 suggests that the meaning and truth value of the Church-Turing
Thesis do not depend on any deep properties of numbers or any assump-
tions about “the primitives of computation” or whether “all computation is
symbolic”; these are now replaced by a well understood view of “what the
numbers are”. It does not prove CT, because RRT is not immediate: its
meaning and justification require identifying a basis for the logical primitives
of computation on an arbitrary set from arbitrary functions and relations.
They should be composition, branching and recursion, of course, but it is
not obvious to me how to prove this beyond a reasonable doubt.

Bibliography
Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74, 47–

73, reprinted in Philosophy of Mathematics, Selected readings, eds. Benacerraf,
P. and Putnam, H., Cambridge University Press, 1983.

Church, A. (1935). An unsolvable problem in elementary number theory. Bul-
letin of the American Mathematical Society, 41, 332–333, this is an abstract of
Church (1936b).

Church, A. (1936a). A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1 (1), 40–41, doi:10.2307/2269326.

Church, A. (1936b). An unsolvable problem in elementary number theory. Amer-
ican Journal of Mathematics, 58 (2), 345–363, an abstract of this paper was
published in Church (1935).

Dershowitz, N. & Gurevich, Y. (2008). A natural axiomatization of computability
and proof of Church’s Thesis. The Bulletin of Symbolic Logic, 14, 299–350,
doi:10.2178/bsl/1231081370.

Gandy, R. (1980). Church’s Thesis and principles for mechanisms. In The Kleene
Symposium, Barwise, J., Keisler, H. J., & Kunen, K., eds., Amsterdam; New
York: North Holland Publishing, 123–148.

Gandy, R. (1995). Church’s Thesis and principles for mechanisms. In The Kleene
Symposium, Barwise, J., Keisler, H. J., & Kunen, K., eds., North Holland
Publishing Co., 123–148.

Gurevich, Y. (2000). Sequential abstract state machines capture sequential algo-
rithms. ACM Transactions on computational logic, 1, 77–111.



On the Church-Turing Thesis and Relative Recursion 199

Kleene, S. C. (1952). Introduction to Metamathematics. New York: Van Nostrand;
North Holland.

Kripke, S. A. (2000). From the Church-Turing Thesis to the First-Order Algorithm
Theorem. In Proceedings of the 15th Annual IEEE Symposium on Logic in
Computer Science, LICS ’00, Washington, DC, USA: IEEE Computer Society,
URL http://dl.acm.org/citation.cfm?id=788022.789011, the reference is
to an abstract. A video of a talk by Saul Kripke at The 21st International
Workshop on the History and Philosophy of Science with the same title is posted
at www.youtube.com/watch?v=D9SP5wj882w, and this is my only knowledge of
this article.

McCarthy, J. (1963). A basis for a mathematical theory of computation. In Com-
puter Programming and Formal Systems, Braffort, P. & Herschberg, D., eds.,
Amsterdam: North-Holland, 33–70.

Moschovakis, Y. N. (1968). Review of four papers on Church’s Thesis. Journal of
Symbolic Logic, 33, 471–472.

Moschovakis, Y. N. (1989). The formal language of recursion. Journal of Symbolic
Logic, 54 (4), 1216–1252, doi:10.1017/S0022481200041086.

Moschovakis, Y. N. (1998). On founding the theory of algorithms. In Truth in
Mathematics, Dales, H. G. & Oliveri, G., eds., Oxford: Clarendon Press, 71–
104, posted on www.math.ucla.edu/∼ynm/ papers/foundalg.pdf.

Sieg, W. (2002). Calculations by man and machine: mathematical presentation. In
In the Scope of Logic, Methodology and Philosophy of Science, Gärdenfors, P.,
Woleński, J., & Kijania-Placek, K., eds., Dordrecht; Boston: Kluwer Academic
Publishers, 247–262.

Tarski, A. (1951). A decision method for elementary algebra and geometry. RAND
Corporation report. Prepared for publication with the assistance of J.C.C. McK-
insey.

Tarski, A. (1986). What are logical notions? History and Philosophy of Logic, 7,
143–154, doi:10.1080/01445348608837096, edited by John Corcoran.

Tiuryn, J. (1989). A simplified proof of DDL < DL. Information and Computation,
82, 1–12.

Tucker, J. & Zucker, J. (2000). Computable functions and semicomputable sets
on many-sorted algebras. In Handbook of Logic in Computer Science, vol. 5,
Abramsky, S., Gabbay, D., & Maibaum, T., eds., New York: Oxford University
Press, 317–523.

Turing, A. M. (1936). On computable numbers with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 42,
230–265, A correction, ibid. volume 43 (1937), pp. 544–546.



200 Yiannis N. Moschovakis

van den Dries, L. & Moschovakis, Y. N. (2004). Is the Euclidean algorithm optimal
among its peers? Bulletin of Symbolic Logic, 10 (3), 390–418.

Yiannis N. Moschovakis

Department of Mathematics, University of California, Los Angeles

USA

ynm@math.ucla.edu

Department of Mathematics, University of Athens

Greece


