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Abstract

We introduce two structural notions of situated meaning fornatural language sen-
tences which can be expressed by terms of Montague’s Language of Intensional
Logic. Using the theory of referential intensions, we definefor a sentence at a par-
ticular situation itsfactual contentand its local meaningwhich express different
abstract algorithms that compute its reference at that situation. With the use of char-
acteristic examples, we attempt to show the distinctive roles of these two notions in
any theory of meaning and to discuss briefly their relation toindexicality, proposi-
tional attitudes and translation.

1. Introduction

If a speaker of the language can rationally believeA and disbe-
lieve B in the same situation, then the sentencesA andB do not
have the same meaning—they are not synonymous.

The principle is old (Frege 1892), and it has been used both asa test for
theories of meaning and a source of puzzles about belief and synonymy. We
think that at least some of the puzzles are due to a confusion between two
plausible and legitimate but distinct understandings ofsituated meaning, the
factual contentand the (referential)local meaning.

Consider, for example, the sentences

A≡ John loves Mary, andB≡ John loves her,

in a state (situation)a in which ‘her’ refers to Mary. They express the same
information about the world in statea (they have the same factual content
at that state); but they do not have the same meaning in that state, as they
are not interchangeable in belief contexts: one may very well believeA but
disbelieveB in a, because she does not know that ‘her’ refers to Mary.

We will give precise, mathematical definitions of factual content and local
meaning for the fragments of natural language which can be formalized in the
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Language of Intensional Logicof Montague (1973), within the mathematical
theory of referential intensions; this is a rigorous (algorithmic), structural
modeling of meanings for the typedλ-calculus developed in (Moschovakis
2006), and so the article can be viewed as a contribution to the formal “logic
of meaning”. We think, however, that some of our results are relevant to the
discussion of these matters in the philosophy of language and in linguistics,
and, in particular, to Kaplan’s work on the logic of indexicals. We will discuss
briefly some of these connections in Section 5.

2. Three formal languages

There are three (related) formal languages that we will dealwith, the Lan-
guage of Intensional LogicLIL of Montague (1973); the Two-sorted Typed
λ-calculusTy2 of Gallin (1975); and the extensionLλ

ar of Ty2 by acyclic recur-
sion in (Moschovakis 2006). We describe these briefly in thissection, and in
the next we summarize equally briefly the theory of referential intensions in
Lλ

ar, which is our main technical tool.1

All three of these languages start with the same, threebasic types

e : entities, t : truth values, s : states,

and, for the interpretation, three fixed, associated, non-empty sets

Te = the entities, Ts = the states, Tt = the truth values= {0,1,er}, (1)

where 1 stands for truth, 0 for falsity ander for “error”.2 Thetypesare defined
by the recursion3

σ :≡ e | s | t | (σ1 → σ2), (2)

and a setTσ of objects of typeσ is assigned to eachσ by adding to (1) the
recursive clause4

T(σ→τ) = the set of all functionsf : Tσ → Tτ. (3)

For each typeσ, there is an infinite sequence of variables of typeσ

vσ
0 ,vσ

1 , . . .

which range overTσ.
It is also useful for our purpose here to assume a fixed (finite)setK of

typed constants as in Table 1, which we will use to specify theterms of all
three languages. Each constantc ∈ K stands for some basic word of natural
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Names, indexicals5 John, I,he,thetemp : e

Sentences it rains : t

Common nouns man : e → t

Extensional intransitive verbs run : e → t

Intensional intransitive verbs rise : (s → e) → t

Extensional transitive verbs love : e → (e → t)
The definite article the : (e → t) → e

Propositional connectives &,∨ : t → (t → t)
(Basic) necessity operator � : (s → t) → t

de dicto modal operatorsYesterday,Today : (s → t) → t

de re modal operators Yesterday1,Today1 : (s → (e → t)) → (e → t)

Table 1.Some constants with theirLIL-typing.

language or logic and is assigned a typeτ which (roughly) corresponds to
its grammatical category; notice though, that common nounsand extensional
intransitive verbs are assigned the same type(e → t), because they take an
argument of typee and (intuitively) deliver a truth value, as in the simple
examples ofrendering(formalization) inLIL,

John is running
render
−−→ run(John), John is a man

render
−−→ man(John).

For the fixed interpretation, each constantc of type σ is assigned a function
from the states to the objects of typeσ:6

if c : σ, then den(c) = c : Ts → Tσ. (4)

ThusJohn is interpreted in each statea by John(a), the (assumed) specific,
unique entity which is referred to by ‘John’ in statea.7 The de re modal op-
eratorYesterday1 is interpreted by the relation on properties and individuals

Yesterday1(a)(p)(x) ⇐⇒ p(a−)(x),

where for each statea, a− is the state on the preceding day, and similarly for
Today1.

Starting with these common ingredients, the languagesLIL, Ty2 andLλ
ar

have their own features, as follows.

2.1. The language of intensional logicLIL

Montague does not admits as a full-fledged primitive type likee andt, but
uses it only as the name of the domain in the formation of function types.



4 Eleni Kalyvianaki and Yiannis N. Moschovakis

This leads to the following recursive definition of types inLIL:

σ :≡ e | t | (s → σ2) | (σ1 → σ2). (LIL-types)

We assume that all constants in the fixed set K are ofLIL-type.
The terms ofLIL are defined by the recursion

A :≡ x | c | A(B) | λ(x)(B) | (̌A) | (̂A) (LIL-terms)

subject to some type restrictions, and eachA is assigned a type as follows,
where

A : σ ⇐⇒ the type ofA is σ.

(LIL-T1) x≡ vσ
i for someLIL-typeσ and somei, andx : σ.

(LIL-T2) c is a constant (of some Montague typeσ), andc : σ.

(LIL-T3) A : (σ → τ),B : σ andA(B) : τ.

(LIL-T4) x≡ vσ
i for someLIL-typeσ and somei, B : τ andλ(x)(B) : (σ → τ).

(LIL-T5) A : (s → τ) and (̌A) : τ.

(LIL-T6) A : τ and (̂A) : (s → τ).

In addition, thefree and bound occurrences of variables in each term are
defined as usual, andA is closedif no variable occurs free in it. Asentenceis
a closed term of typet.

The constructs ˇ(A) and (̂A) are necessary becauseLIL does not have vari-
ables over states, and express (roughly) application and abstraction on an im-
plicit variable which ranges over “the current state”. Thisis explained by the
semantics ofLIL and made explicit in the Gallin translation ofLIL into Ty2
which we will describe in the next section.

Semantics ofLIL

As usual, anassignmentπ is a function which associates with each variable
x ≡ vσ

i some objectπ(x) ∈ Tσ. The denotation of eachLIL-term A : σ is a
function

denLIL(A) : Assignments→ (Ts → Tσ)

which satisfies the following, recursive conditions, wherea,b range over the
set of statesTs:8
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(LIL-D1) denLIL(x)(π)(a) = π(x).

(LIL-D2) denLIL(c)(π)(a) = c(a), as in (4).

(LIL-D3) denLIL(A(B))(π)(a) =
(

denLIL(A)(π)(a)
)

(

denLIL(B)(π)(a)
)

.

(LIL-D4) denLIL(λ(x)(B))(π)(a) =
(

t 7→ denLIL(B)(π{x := t})(a)
)

,

wherex : σ andt ranges over the objects inTσ (with σ aLIL-type).

(LIL-D5) denLIL( (̌A))(π)(a) =
(

den(A)(π)(a)
)

(a).

(LIL-D6) denLIL( (̂A))(π)(a) = (b 7→ denLIL(A)(π)(b)) (= denLIL(A)(π)).

Consider the following four, simple and familiar examples which we will
use throughout the paper to illustrate the various notions that we introduce;
these are sentences whose denotations are independent of any assignmentπ,
and so we will omit it.

John loves her
render
−−→ love(John,her) (5)

denLIL

(

love(John,her)
)

(a) = love(a)(John(a),her(a))

John loves himself
render
−−→

(

λ(x)love(x,x)
)

(John) (6)

denLIL

(

(

λ(x)love(x,x)
)

(John)
)

(a) = (t 7→ love(a)(t, t))(John(a))

= love(a)(John(a),John(a))

The President is necessarily American
render
−−→ �

(

(̂American(the(president)))
)

(7)

denLIL

(

�( (̂American(the(president))))
)

(a)

= Nec(a)
(

b 7→ American(b)(the(b)(president(b)))
)

I was insulted yesterday
render
−−→ Yesterday1( b̂e insulted, I) (8)

denLIL

(

Yesterday1( b̂e insulted, I)
)

(a)

= Yesterday1(a)(denLIL( b̂e insulted)(a),denLIL(I)(a))

= Yesterday1(a)(b 7→ be insulted(b), I(a))
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The temperature is ninety and rising
render
−−→

(

λ(x)[ninety( x̌)& rise(x)]
)

( (̂thetemp)) (9)

For (9), a computation similar to those in the examples abovegives the cor-
rect, expected denotation.

2.2. The two-sorted, typed,λ-calculusTy2

The assumption that every term is interpreted in “the current state” and the
lack of state variables are natural enough when we think of the terms ofLIL

as rendering expressions of natural language, but they are limiting and tech-
nically awkward. Both are removed in the two-sorted typedλ-calculusTy2,
whose characteristic features are that it admits all types as in (2), and inter-
prets terms of typeσ by objects inTσ. We fix a set of constants

KG = {cG | c ∈ K}

in one-to-one correspondence with the constantsK of LIL9. In accordance
with the interpretation (rather than the formal typing) ofLIL,

if c : σ, thencG : (s → σ) and den(cG)(a) = cG(a) = c(a) (a∈ Ts),

i.e., the objectcG in Ty2 which interpretscG is exactly the objectc which
interpretsc in LIL. The terms ofTy2 are defined by the recursion

A :≡ x | cG | A(B) | λ(x)(B) (Ty2-terms)

where nowx can be a variable of any type as in (2), and the typing of terms
is obvious. Assignments interpret all variables, including those of types, and
denotations are defined naturally:

(Ty2−D1) den(x)(π) = π(x).

(Ty2−D2) den(cG)(π) = cG.

(Ty2−D3) den(A(B))(π) =
(

den(A)(π)
)

(den(B)(π)).

(Ty2−D4) den(λ(x)A(x))(π) =
(

t 7→ den(A)(π{x := t})
)

.

We notice the basic property of theTy2-typing of terms: for every assignment
π,

if A : σ, then den(A)(π) ∈ Tσ. (10)
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The Gallin translation

For eachLIL-termA and each state variableu representing “the current state”,
the Gallin translationAG,u of A in Ty2 is defined by the following recursive
clauses:10

[x]G,u :≡ x

[c]G,u :≡ cG(u)

[A(B)]G,u :≡ AG,u(BG,u)

[λ(x)(A)]G,u :≡ λ(x)(AG,u)

[ Ǎ]G,u :≡ AG,u(u)

[ Â]G,u :≡ λ(u)AG,u

By an easy recursion on theLIL-terms,AG,u has the same (LIL-) type asA,
and for every assignmentπ,

if π(u) = a, then den(AG,u)(π) = denLIL(A)(π)(a).

In effect, the Gallin translation expresses formally (within Ty2) the definition
of denotations ofLIL.

Here are the Gallin translations of the standard examples above:11

[love(John,her)]G,u ≡ loveG(u)(JohnG(u),herG(u)) (11)
[

λ(x)
(

love(x,x)
)

(John)
]G,u

≡
(

λ(x)loveG(u)(x,x)
)

(JohnG(u)) (12)

[

�

(

(̂American(the(president)))
)]G,u

≡ �
G(u)

(

λ(u)AmericanG(u)(theG(u)(presidentG(u)))
)

(13)

[

Yesterday1( b̂e insulted, I)
]G,u

≡ Yesterday1
G(u)

(

λ(u)be insultedG(u), IG(u)
)

(14)

[(

λ(x)[ninety( x̌)& rise(x)]
)

(

(̂thetemp)
)

]G,u

≡
(

λ(x)[ninetyG(u)(x(u))& riseG(u)(x)]
)

(

λ(u)thetempG(u)
)

(15)

Notice that the selected formal variableu occurs both free and bound in these
Gallin translations—which may be confusing, but poses no problem.
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2.3. Theλ-calculus with acyclic recursionLλ
ar

We now add toTy2 an infinite sequence ofrecursion variablesor locations

pσ
0 ,pσ

1, . . .

for each typeσ. In the semantics of the extended languageLλ
ar, these will

vary over the corresponding universeTσ just as the usual (pure) variables
vσ

0 ,vσ
1 , . . ., but they will be assigned-to rather than quantified in the syntax,

and so they will be treated differently by the semantics. Theterms ofLλ
ar are

defined by the following extension of the recursive definition of theTy2-terms:

A :≡ x | p | cG | A(B) | λ(x)(B)

| A0 where {p1 := A1, . . . , pn := An} (Lλ
ar-terms)

wherex is a pure variable of any type;p is a location of any type; and the
restrictions, typing and denotations are defined exactly asfor Ty2 for all but
the last, newacyclic recursion construct, where they are as follows.

Acyclic recursive terms

For A≡ A0 where {p1 := A1, . . . , pn := An} to be well-formed, the following
conditions must be satisfied:

(i) p1, . . . , pn are distinct locations, such that the type of eachpi is the
same as that of the termAi, and

(ii) the system ofsimultaneous assignments{p1 := A1, . . . , pn := An} is
acyclic, i.e., there are no cycles in thedependence relation

i ≻ j ⇐⇒ p j occurs free inAi

on the index set{1, . . . ,n}.

All the occurrences of the locationsp1, . . . , pn in theparts A0, . . . ,An of A are
bound inA, and the type ofA is that of itshead A0. The bodyof A is the
system{p1 := A1, . . . , pn := An}.

To define the denotation function of a recursive termA, we notice first that
by the acyclicity condition, we can assign a number rank(pi) to each of the
locations inA so that

if p j occurs free inAi, then rank(pi) > rank(p j).
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For each assignmentπ then (which now interprets all pure and recursive vari-
ables), we set by induction on rank(pi),

pi(π) = den(Ai)(π{p j1 := p j1, . . . , p jm := p jm}),

wherep j1, . . . , p jm is an enumeration of the locations with rank(p jk)< rank(pi),
(k = 1, . . . ,m), and finally,

den(A)(π) = den(A0)(π{p1 := p1, . . . , pn := pn}).

For example, if

A≡
(

λ(x)(p(x)& q(x))
)

(t) where
{

p := λ(x)ninetyG(u)(r(x)),

r := λ(x)x(u), q := λ(x)riseG(u)(x), t := λ(u)thetempG(u)
}

, (16)

we can compute den(A)(π) = den(A) in stages, corresponding to the ranks of
the parts, witha = π(u):

Stage 1. r = (x 7→ x(a)), sor(x) = x(a),
q = (x 7→ riseG(a)(x)) = riseG(a), so that
q(x) = 1 ⇐⇒ x is rising in statea, andt = thetempG.

Stage 2. p = (x 7→ ninetyG(a)(r(x))), so p(x) = 1 ⇐⇒ x(a) = 90.

Stage 3. den(A) = p(t)& q(t), so

den(A) = 1 ⇐⇒ thetempG(a) = 90& riseG(a)(thetempG).

We will use the familiar model-theoretic notation for denotational equiva-
lence,

|= A = B ⇐⇒ for all assignmentsπ,den(A)(π) = den(B)(π).

It is very easy to check thateveryLλ
ar-term A is denotationally equivalent

with a Ty2-term A∗, and soLλ
ar is no-more expressive thanTy2 as far as deno-

tations go; it is, however,intensionallymore expressive thanTy2, as we will
see.
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Congruence

Two Lλ
ar-terms are congruent if one can be obtained from the other by alpha-

betic changes of bound variables (of either kind) and re-orderings of the parts
in the bodies of recursive subterms, so that, for example, assuming that all
substitutions are free,

λ(x)(A{z :≡ x}) ≡c λ(y)(A{z :≡ y}),

A{p :≡ q} where {q := B{p :≡ q}} ≡c A where {p := B},

A where {p := B,q := C} ≡c A where {q := C, p := B}.

All the syntactic and semantic notions we will define respectcongruence, and
so it will be convenient on occasion to identify congruent terms.

SinceTy2 is a sublanguage ofLλ
ar, we can think of the Gallin translation

as an interpretation ofLIL into Lλ
ar; and so we can apply to the terms ofLIL

the theory of meaning developed forLλ
ar in (Moschovakis 2006), which we

describe next.

3. Referential intension theory

Thereferential intensionint(A) of aLλ
ar-termA is a mathematical (set-theoret-

ic) object which purports to represent faithfully “the natural algorithm” (pro-
cess) which “computes” den(A)(π) for eachπ. It models an intuitive notion of
meaningfor Lλ

ar-terms (and the natural language expressions which they ren-
der), and it provides a precise relation≈ of synonymybetween terms which
can be tested against our intuitions and other theories of meaning that are
similarly based on “truth conditions”. Roughly:

A ≈ B ⇐⇒ int(A) = int(B) (A,B in Lλ
ar), (17)

where “A in Lλ
ar” naturally means thatA is aLλ

ar-term. To facilitate the discus-
sion of meaning inLIL, we also set

A ≈LIL B ⇐⇒ AG,u
≈ BG,u (A,B in LIL). (18)

This relation models quite naturally (global) synonymy forterms ofLIL.
The operationA 7→ int(A) and the relation of referential synonymy are

fairly complex, and their precise definitions in (Moschovakis 2006) require
the establishment of several technical facts. Here we will confine ourselves to
a brief summary of the main results of referential intensiontheory, primarily
so that this article can be read independently of (Moschovakis 2006).
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There are two important points to keep in mind.
First, variables and some very simple,immediate(variable-like) terms

are not assigned referential intensions: they denotedirectly andimmediately,
without the mediation of a meaning. Thus (17) is not exactly right: it holds
for proper (non-immediate terms), while for immediate terms synonymyco-
incides with denotational equality or (equivalently for these terms) congru-
ence. The distinction betweendirect and immediatereference is precise but
not just technical: it lies at the heart of the referential intension approach to
modeling meaning, and it plays an important role in our analysis of examples
from natural language. We will discuss it in Section 3.2.

Second, the denotational rule ofβ-conversion

|=
(

λ(x)A
)

(B) = A{x :≡ B}

does not preserve referential synonymy, so that, for example,
(

λ(x)love(x,x)
)

(John) 6≈LIL love(John,John).

This is common in structural theories of meaning in which themeaning of a
term A codes (in particular) the logical form ofA; see (Moschovakis 2006)
for a related extensive discussion. It is good to remember this here, especially
as we render natural language phrases intoLIL and then translate these terms
into Ty2 and so intoLλ

ar: we want rendering to preserve (intuitive) meaning,
so that we have a chance of capturing it with the precisely defined referential
intension of the end result, and so we should not lose it by carelessly applying
β-conversions in some step of the rendering process.

3.1. Reduction, irreducibility, canonical forms

The main technical tool of (Moschovakis 2006) is a binary relation ofreduc-
tion betweenLλ

ar-terms, for which (intuitively)

A⇒ B ⇐⇒ A≡c B

or A andB have the same meaning

andB expresses that meaning “more simply”.

The disjunction is needed because the reduction relation isdefined for all
pairs of terms, even those which do not have a meaning, for which, however,
the relation is trivial. We set

A is irreducible⇐⇒ for all B, if A⇒ B, thenA≡c B, (19)
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so that the irreducible terms which have meaning, express that meaning “as
simply as possible”.

Theorem 1 (Canonical form) For each term A, there is a unique(up to con-
gruence)recursive, irreducible term

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An},

such that A⇒ cf(A). We write

A⇒cf B ⇐⇒ B≡c cf(A).

If A⇒ B, then|= A = B, and, in particular,|= A = cf(A).

The reduction relation is determined by ten, simplereduction ruleswhich
comprise theReduction Calculus, and the computation of cf(A) is effective.
The partsAi of cf(A) areexplicit12, irreducible terms; they are determined
uniquely (up to congruence) byA; and they code the basic facts which are
needed to compute the denotation ofA, in the assumed fixed interpretation of
the language. IfA : t and den(A) = 1, then the irreducible parts of cf(A) can
be viewed as thetruth conditionswhich ground the truth ofA.

Variables and constants are irreducible, and so is the more complex-looking
termλ(x)loveG(u)(x,x). On the other hand, the term expressing John’s self-
love in the current state is not:

(

λ(x)loveG(u)(x,x)
)

(JohnG(u))

⇒cf

(

λ(x)loveG(u)(x,x)
)

( j) where { j := JohnG(u)}. (20)

For a more complicated example, the canonical form of the Gallin transla-
tion of the Partee term in (15) is the term (16). So canonical forms get very
complex, as do their explicit, irreducible parts—which is not surprising, since
they are meant to express directly the meanings of complex expressions.

The specific rules of the Reduction Calculus are at the heart of the matter,
of course, and they deliver the subtle differences in (formal) meaning with
which we are concerned here. It is not possible to state or explain them in
this article—they are the main topic of (Moschovakis 2006);but the most
important of them will be gleaned from their applications inthe examples
below.
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3.2. Direct vs. immediate reference

An important role in the computation of canonical forms is played by the
immediate terms. These are defined by

X :≡ v | p | p(~v) | λ(~u)p(~v), (Immediate terms)

where~v = (v1, . . . ,vn),~u = (u1, . . . ,um) and v,v1, . . . ,vn,u1, . . . ,um are pure
variables, whilep is a location. Immediate terms are treated like variables
in the Reduction Calculus; this is not true of constants (andother irreducible
terms) which contribute in a non-trivial way to the canonical forms of the
terms in which they occur. For example,runG(u)(p(v)) is irreducible, be-
causep(v) is immediate, whilerunG(u)(JohnG(u)) is not:

runG(u)(JohnG(u)) ⇒cf runG(u)( j) where { j := JohnG(u)}.

In the intensional semantics ofLλ
ar to which we will turn next, immediate

terms referdirectly and immediately: they are not assigned meanings, and
they contribute only their reference to the meaning of larger (proper) terms
which contain them. Irreducible terms also refer directly,in the sense that
their meaning is completely determined by their reference;but they are as-
signed meanings, and they affect in a non-trivial (structural) way the mean-
ings of larger terms which contain them.

3.3. Referential intensions

If A is not immediate and

A⇒cf A0 where {p1 := A1, . . . , pn := An},

then int(A) is the abstract algorithm which intuitively computes den(A)(π)
for each assignmentπ as indicated in the remarks following (16), as follows:

(i) Solve the system of equations

di = den(Ai)(π{p1 := d1, p2 := d2, . . . , pn := dn}) (i = 1, . . . ,n),

(which, easily, has unique solutions by the acyclicity hypothesis).

(ii) If the solutions arep1, . . . , pn, set

den(A)(π) = den(A0)(π{p1 := p1, . . . , pn := pn}).
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So how can we define precisely this “abstract algorithm”? Theidea is
that it must be determined completely by the head ofA and the system of
equations in its body, and it should not depend on any particular method of
solving the system; so it is most natural to simply identify it with the tuple of
functions

int(A) = ( f0, f1, . . . , fn) (21)

defined by the parts ofA, i.e.,

fi(d1, . . . ,dn,π) = den(Ai)(π{p1 := d1, p2 := d2, . . . , pn := dn}) (i ≤ n).

Tuples of functions such as (21) are calledrecursors.
For a concrete example, which also illustrates just how abstract this notion

of meaning is, the referential intension of the Partee example (15) is deter-
mined by its canonical formAG,u in (16), and it is the recursor

int(A) = ( f0, f1, f2, f3, f4),

where

f0(p, r,q, t,π) =
(

x 7→ (p(x)& q(x))(t)
)

,

f1(p, r,q, t,π) =
(

x 7→ ninetyG(π(u))(r(x))
)

,

f2(p, r,q, t,π) =
(

x 7→ x(π(u))
)

,

f3(p, r,q, t,π) =
(

x 7→ riseG(π(u))(x)
)

,

f4(p, r,q, t,π) = thetempG.

Theorem 2 (Compositionality) The operation A7→ int(A) on proper (not
immediate) terms is compositional, i.e.,int(A) is determined from the ref-
erential intensions of the proper subterms of A and the denotations of its
immediate subterms.

This does not follow directly from the definition of referential intensions
that we gave above, via canonical forms, but it is not difficult to prove.

3.4. Referential synonymy

Two termsA andB are referentially synonymousif either A ≡c B, or int(A)
and int(B) arenaturally isomorphic. Now this is tedious to make precise, but,
happily, we don’t need to do this here because of the following
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Theorem 3 (Referential Synonymy) For any two terms A,B of Lλ
ar, A is ref-

erentially synonymous with B if and only if there exist suitable terms A0, . . .,
B0, . . . such that

A ⇒cf A0 where {p1 := A1, . . . , pn := An},

B ⇒cf B0 where {p1 := B1, . . . , pn := Bn},

and for i= 0,1, . . . ,n, |= Ai = Bi, i.e., for all π, den(Ai)(π) = den(Bi)(π).

Thus the referential synonymy relationA ≈ B is grounded by a system of
denotational identities between explicit, irreducible terms. It is important, of
course, that the formal identities

Ai = Bi, i = 0, . . . ,n

can be computed fromA andB (using the Reduction Calculus), although their
truth or falsity depends on the assumed, fixed structure of interpretation and
cannot, in general, be decided effectively.

4. Two notions of situated meaning

We can now make precise the two, promised notions of situatedmeaning for
terms ofLIL, after just a bit more preparation.

State parameters

Intuitively, a notion of “situated meaning” of aLIL-term A : τ is a way that
we understandA in a given statea; and so it depends ona, even whenA is
closed, when its semantic values do not depend on anything else. To avoid
the cumbersome use of assignments simply to indicate this state dependence,
we introduce aparameterā for each statea, so that the definition of the terms
of Lλ

ar now takes the following form:

A :≡ x | ā | p | cG | A(B) | λ(x)(B)

| A0 where {p1 := A1, . . . , pn := An} (Lλ
ar-terms)

Parameters are treated like free pure variables in the definition of immediate
terms and in the Reduction Calculus; in fact, the best way to think of ā is as
a free variable withpreassignedvalue

den(ā)(π) = a

which does not depend on the assignmentπ.
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4.1. Factual content

The term
AG,ā ≡ AG,u{u :≡ ā} (22)

expresses the Gallin translation ofA at the statea—not only its denotation,
but also its meaning or at least one aspect of it. Thus, for each properLIL-term
A and each statea, we set

FC(A,a) = int
(

AG,ā
)

. (23)

This is the (referential)factual contentof A at the statea. For proper terms
A,B and statesa,b, we also set13

(A,a) is factually synonymouswith (B,b) ⇐⇒ FC(A,a) = FC(B,b)

⇐⇒ AG,ā
≈ BG,b̄.

By the Referential Synonymy Theorem 3 then, we can read factual synonymy
by examining the canonical forms of terms. For example,

[John loves her]G,ā render
−−→ loveG(ā)(JohnG(ā),herG(ā))

⇒cf loveG(ā)( j,h) where { j := JohnG(ā),h := herG(ā)}

and

[John loves Mary]G,ā render
−−→ loveG(ā)(JohnG(ā),MaryG(ā))

⇒cf loveG(ā)( j,h) where { j := JohnG(ā),h := MaryG(ā)},

so that

if den
(

MaryG(ā)
)

= den
(

herG(ā)
)

,

then [John loves her]G,ā
≈ [John loves Mary]G,ā,

which expresses formally the fact that ‘John loves her’ and ‘John loves Mary’
convey the same “information” about the world at this statea. These two sen-
tences are not, of course, synonymous, as it is easy to verifyby the definition
of ≈LIL in (18) and Theorem 3.

Next consider example (8) which involves the indexical ‘Yesterday’. In
(Frege 1918), Frege argues that
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If someone wants to say today what he expressed yesterday us-
ing the word ‘today’, he will replace this word with ‘yesterday’.
Although the thought is the same, its verbal expression mustbe
different in order that the change of sense which would otherwise
be effected by the differing times of utterance may be cancelled
out.

It appears that Frege’s “thought” in this case is best modeled by the factual
content of the uttered sentence in the relevant state.

In detail, suppose that at statea the speaker is DK and the time is 27 June
2005. If we consider the sentence ‘I am insulted today’ uttered at a state
b = a− when the time is 26 June 2005, the speaker is again DK and nothing
else has changed, then, according to Frege’s remark above, it should be that

[

I was insulted yesterday
]G,ā

≈
[

I am insulted today
]G,b̄

.

This is indeed the case:
[

I was insulted yesterday
]G,ā

render
−−→ Yesterday1

G(ā)
(

λ(u)be insultedG(u), IG(ā)
)

⇒cf Yesterday1
G(ā)(p,q) where {p := λ(u)be insultedG(u),q := IG(ā)}

[

I am insulted today
]G,b̄ render

−−→ Today1
G(b̄)

(

λ(v)be insultedG(v), IG(b̄)
)

⇒cf Today1
G(b̄)(p,q) where {p := λ(v)be insultedG(v),q := IG(b̄)},

and the canonical forms of these sentences at these states satisfy the condi-
tions of Theorem 3 for synonymy—assuming, of course, thatYesterday1 and
Today1 are interpreted in the natural way, so that for thesea andb,

Yesterday1(a)(p)(x) ⇐⇒ Today1(b)(p)(x) (p : Ts → (Te → Tt),x∈ Te).

On the other hand, example (7) shows that, in some cases, the factual
content is independent of the state and incorporates the full meaning of the
term:

[The President is necessarily American]G,ā

render
−−→ �

G(ā)
(

λ(u)AmericanG(u)(theG(u)(presidentG(u)))
)

⇒cf �
G(ā)(q) where {q := λ(u)AmericanG(u)(t(u)),

t := λ(u)theG(u)(p(u)), p := λ(u)presidentG(u)}.
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Notice that the state parameter ¯aoccurs only in the head of the relevant canon-
ical form, and so, with the “necessarily always” interpretation of � that we
have adopted, the factual content of this term is independent of the statea.

4.2. Referential (global) meaning

A plausible candidate for the (global)referential meaningof a LIL-termA is
the operation

a 7→ int
(

AG,ā)

which assigns to each statea the factual content ofA ata. We can understand
this outside the formal system, as an operation from states to recursors; but we
can also do it within the system, taking advantage of the abstraction construct
of the typedλ-calculus and setting

M(A) = int
(

λ(u)AG,u). (24)

It follows by Theorem 3 and the Reduction Calculus that for proper terms
A,B,

M(A) = M(B) ⇐⇒ λ(u)AG,u
≈ λ(u)BG,u ⇐⇒ A ≈LIL B,

and so there is no conflict between this notion of global meaning and the
referential synonymy relation betweenLIL-terms defined directly in terms of
the Gallin translation.

The recursor M(A) is expressed directly by the canonical form ofλ(u)AG,u,
which gives some insight into this notion of formal meaning.For example:

λ(u)[John loves her]G,u render
−−→ λ(u)loveG(u)(JohnG(u),herG(u))

⇒cf λ(u)loveG(u)( j(u),h(u)) where { j := λ(u)JohnG(u),h := λ(u)herG(u)}

≈ λ(u)loveG(u)( j(u),h(u)) where { j := JohnG,h := herG}

while

λ(u)[John loves Mary]G,u render
−−→ λ(u)loveG(u)(JohnG(u),MaryG(u))

⇒cf λ(u)loveG(u)( j(u),h(u)) where { j := λ(u)JohnG(u),

h := λ(u)MaryG(u)}

≈ λ(u)loveG(u)( j(u),h(u)) where { j := JohnG,h := MaryG}.

To “grasp” the meanings of these two sentences, as Frege would say, we
need the functionslove, John, Mary andher—not their values in any one,
particular state, but their range of values in all states; and to realize that they
are not synonymous, we need only realize that ‘her’ is not ‘Mary’ in all states.
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4.3. Local meaning

Once we have a global meaning ofA, we can compute itslocal meaning
at a statea by evaluation, and, again, we could do this outside the system
by defining in a natural way an operation of application of a recursor to an
argument; but since we already have application in the typedλ-calculus, we
set, within the system,

LM(A,a) = int
(

(λ(u)AG,u)(ā)
)

. (25)

This is the (referential)local meaningof A at a. For proper termsA,B and
statesa,b, we set

(A,a) is locally synonymouswith (B,b) ⇐⇒ LM(A,a) = LM(B,b)

⇐⇒
(

λ(u)AG,u
)

(ā) ≈

(

λ(v)BG,v
)

(b̄).

It is important to recall here that, in general,
(

λ(u)CG,u
)

(ā) 6≈ CG,ā,

becauseβ-conversion does not preserve referential synonymy.

The three synonymy relations we have defined are related as one would
expect:

Lemma 1 (a) Referential synonymy implies local synonymy at any state,
that is

λ(u)AG,u
≈ λ(u)BG,u =⇒

(

λ(u)AG,u)(ā) ≈
(

λ(u)BG,u)(ā)

(b) Local synonymy at a state implies factual synonymy at that state,

(

λ(u)AG,u)(ā) ≈
(

λ(u)BG,u)(ā) =⇒ AG,ā
≈ BG,ā.

Both parts of the lemma are easily proved using Theorem 3 and some sim-
ple denotational equalities between the parts of the relevant canonical forms.

In the following sections, we consider some examples which (in particu-
lar) show that neither part of the Lemma has a valid converse.Perhaps most
interesting are those which distinguish between factual and local synonymy,
and show that the latter is a much more fine-grained relation,very close in
fact to (global) referential synonymy.
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4.4. Factual content vs. local meaning

In Section 4.1, we showed that for any statea,

if her(a) = Mary(a), then[John loves her]G,ā
≈ [John loves Mary]G,ā.

To check for local synonymy, we compute the canonical forms of these terms:
(

λ(u)[John loves her]G,u
)

(ā)

render
−−→

(

λ(u)loveG(u)(JohnG(u),herG(u))
)

(ā)

⇒cf

(

λ(u)loveG(u)( j(u),h(u))
)

(ā)

where { j := λ(u)JohnG(u),h := λ(u)herG(u)}

≈ loveG(ā)( j(ā),h(ā)) where { j := JohnG,h := herG}

while
(

λ(u)[John loves Mary]G,u
)

(ā)

render
−−→

(

λ(u)loveG(u)(JohnG(u),MaryG(u))
)

(ā)

⇒cf

(

λ(u)loveG(u)( j(u),h(u))
)

(ā)

where { j := λ(u)JohnG(u),h := λ(u)MaryG(u)}

≈ loveG(ā)( j(ā),h(ā)) where { j := JohnG,h := MaryG}

But herG 6= MaryG, and so these two sentences are not locally synonymous
ata—although they have the same factual content ata.

The example illustrates the distinction between factual content and local
meaning: to grasp the factual content FC(John loves her,a) we only need
know who ‘her’ is at statea; on the other hand, to grasp the local meaning
LM(John loves her,a) we need to understand ‘her’ as a function on the states.
This is what we also need in order to grasp the (global) referential meaning
of ‘John loves her’, which brings us to the more difficult comparison between
local and global meaning.

4.5. Local vs. global synonymy

By the Reduction Calculus, if

AG,u ⇒cf A0 where {p1 := A1, . . . , pn := An}
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then

λ(u)AG,u ⇒cf λ(u)(A0{p1 :≡ q1(u), . . . , pn :≡ qn(u)})

where
{

q1 := λ(u)A1{p1 :≡ q1(u), . . . , p1 :≡ qn(u)},

...

qn := λ(u)An{p1 :≡ q1(u), . . . , pn :≡ qn(u)}
}

and
(

λ(u)AG,u)(ā) ⇒cf
(

λ(u)(A0{p1 :≡ q1(u), . . . , pn :≡ qn(u)})
)

(ā)

where
{

q1 := λ(u)A1{p1 :≡ q1(u), . . . , p1 :≡ qn(u)},

...

qn := λ(u)An{p1 :≡ q1(u), . . . , pn :≡ qn(u)}
}

The computations here are by the most complex—and most significant—λ-
rule of the Reduction Calculus, which, unfortunately, we cannotattempt to
motivate here. The formulas do imply, however, that for any termB,

(

λ(u)AG,u)(ā) ≈
(

λ(u)BG,u)(ā)

if and only if

BG,u ⇒cf B0 where {p1 := B1, . . . , pn := Bn},

for suitableB0, . . . ,Bn, so that:

For anyi = 1, . . . ,n, (1)

|= λ(u)(Ai{p1 :≡ q1(u), . . . , pn :≡ qn(u)})

= λ(u)(Bi{p1 :≡ q1(u), . . . , pn :≡ qn(u)}),

and

|= A0{u :≡ ā}{p1 :≡ q1(ā), . . . , pn :≡ qn(ā)}

= B0{u :≡ ā}{p1 :≡ q1(ā), . . . , pn :≡ qn(ā)}. (2)

On the other hand,A ≈LIL B if (1) holds and instead of (2) the stronger

|= λ(u)(A0{p1 :≡ q1(u), . . . , pn :≡ qn(u)})

= λ(u)(B0{p1 :≡ q1(u), . . . , p1 :≡ qn(u)}) (2∗)

is true.
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Thus, local synonymy is very close to global synonymy, the only differ-
ence being that for global synonymy we need the heads of the two terms to
be denotationally equal for all states, while for local synonymy at a statea,
we only need their heads to be denotationally equal ata. This explains why,
by Lemma 1, the former implies the latter while the converse may fail.

Natural examples which illustrate this distinction are hard to find, but the
following one may, at least, be amusing.

Consider a particular statea at which two common nouns are co-extensive
– for example, ‘man’ and ‘human’. This was the case at the timejust after
God had created Adam but not yet Eve. At that statea, then, the sentences
‘Adam is a man’ and ‘Adam is a human’ are locally synonymous, since

(

λ(u)[Adam is a man]G,u
)

(ā)

render
−−→

(

λ(u)manG(u)(AdamG(u)
)

(ā)

⇒cf

(

λ(u)manG(u)( j(u)
)

(ā) where { j := λ(u)AdamG(u)}

(

λ(u)[Adam is human]G,u
)

(ā)

render
−−→

(

λ(u)humanG(u)(AdamG(u)
)

(ā)

⇒cf

(

λ(u)humanG(u)( j(u)
)

(ā) where { j := λ(u)AdamG(u)}

and

|= manG(ā)( j(ā)) = humanG(ā)( j(ā)).

These sentences, of course, are not referentially synonymous, as they are
not even factually synonymous in any reasonable state.

4.6. Local synonymy across different states

Things get more complicated when we try to trace local synonymy between
sentences at different states. In Section 4.1, it was shown that ‘Yesterday I
was insulted’ uttered at a statea where the time is 27 June 2005 and ‘Today
I am insulted’ uttered at stateb where the time is 26 June 2005 are factually
synonymous, provided that the two states are otherwise identical. By the
Reduction Calculus,
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(

λ(u)
[

Yesterday I was insulted
]G,u

)

(ā)

render
−−→

(

λ(u)Yesterday1
G(u)

(

λ(u)be insultedG(u), IG(u)
)

)

(ā)

⇒cf

(

λ(u)Yesterday1
G(u)(p(u),q(u))

)

(ā) where

{p := λ(u)λ(u)be insultedG(u),q := λ(u)IG(u)}

and
(

λ(u)
[

Today I am insulted
]G,u

)

(b̄)

render
−−→

(

λ(u)Today1
G(u)

(

λ(u)be insultedG(u), IG(u)
)

)

(b̄)

⇒cf

(

λ(u)Today1
G(u)(p(u),q(u))

)

(b̄) where

{p := λ(u)λ(u)be insultedG(u),q := λ(u)IG(u)},

and these two canonical forms have the same bodies, so they will be locally
synonymous if and only if their heads are denotationally equal. But

6|= Yesterday1
G(ā)(p(ā),q(ā)) = Today1

G(b̄)(p(b̄),q(b̄))

on the possible assumption that John is running while Mary sleeps (today and
yesterday), taking

π(p)(a) = π(p)(b) = runs(a), π(q)(a) = John, π(q)(b) = Mary

and computing the denotations of the two sides of this equation for the as-
signmentπ; so

LM(Yesterday I was insulted,a) 6= LM(Today I am insulted,b).

This argument is a little unusual, and it may be easier to understand in the
next example, where we compare the local meanings of the samesentence,
with no modal operator, on two different but nearly identical states. Consider
‘John runs’, ina andb:

(

λ(u)runG(u)(JohnG(u))
)

(ā)

⇒cf

(

λ(u)runG(u)( j(u))
)

(ā) where { j := λ(u)JohnG(u))}
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(

λ(u)runG(u)(JohnG(u))
)

(b̄)

⇒cf

(

λ(u)runG(u)( j(u))
)

(b̄) where { j := λ(u)JohnG(u))}

Local synonymy requires that

|= runG(ā)( j(ā)) = runG(b̄)( j(b̄)), (26)

which means that for all functionsj : Ts → Te,

runG(a)( j(a)) = runG(b)( j(b)).

Suppose further that the two statesaandbare exactly the same except that the
speaker is different—an aspect of the state that, intuitively, should not affect
the meaning of ‘John runs’. In particular, the interpretation runG : s→ (e→ t)
of the constantrunG is the same in the two states, i.e., that whoever runs at
statea also runs at stateb and conversely. But unless either everyone or
nobody runs in these states, (26) fails: just take an assignment π such as
π( j)(a) 6= π( j)(b) and such that in both statesπ( j)(a) runs whereasπ( j)(b)
does not run.

The examples suggest that synonymy across different statesis a complex
relation, and that when we feel intuitively that sentences may have the same
“meaning” in different states, it is factual synonymy that we have in mind.

5. Situated meaning in the philosophy of language

In this section we will investigate briefly the connection ofthe proposed as-
pects of situated meaning to indexicality, propositional attitudes and transla-
tion.

5.1. Kaplan’s treatment of indexicals

Indexicality is a phenomenon of natural language usage, closely connected to
situated meaning. Among its many proposed treatments, Kaplan’s theory of
direct reference (Kaplan 1989) reaches some very interesting results which
we can relate to the aspects of situated meaning introduced in this paper.

Kaplan’s theory is expressed formally in the Logic of Demonstratives
(LD), where each term or formula has two semantic values,Contentand
Character. The Content of a term or a formula is given with respect to a
context, considered ascontext of utterance, and it is a function from possible
circumstances, considered ascontexts of evaluation, to denotations or truth
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values, respectively. The Character of a term or a formulaA is the function
which assigns to each context the Content ofA in that context.

In (Kaplan 1978), it is argued that

Thus when I say
I was insulted yesterday (K4)

specific content–what I said–is expressed. Your utterance of the
same sentence, or mine on another day, would not express the
same content. What is important to note is that it is not just
the truth value that may change; what is said is itself different.
Speaking today, my utterance of (K4) will have a content roughly
equivalent to that which

David Kaplan is insulted on 20 April 1973 (K5)

would have, spoken by you or anyone at any time.

Kaplan gives formal definitions of these notions inLD, from which it fol-
lows that at a context of utterance where the speaker is DavidKaplan and
the time is 21 April 1973, the two sentences (K4) and (K5) havethe same
Content, that is the same truth value for every possible circumstance: but, of
course, they have different Characters—(K5)’s Character is a constant func-
tion, whereas (K4)’s clearly depends on the context of utterance.

In Lλ
ar, these intuitively plausible semantic distinctions can bemade with

the use of the factual content and the global meaning which, roughly speak-
ing, correspond to Kaplan’s Content and Character respectively.

Supposea is a state14 where the speaker is David Kaplan (or DK for short)
and the time is 21 April 1973. As example (8) suggests, (K4) and (K5) are
factually synonymous ata, that is

[

I was insulted yesterday
]G,ā

≈
[

David Kaplan is insulted on 20 April 1973
]G,ā

.

Moreover, for any stateb whereDavidKaplanG(b) is David Kaplan,

[

I was insulted yesterday
]G,ā

≈
[

David Kaplan is insulted on 20 April 1973
]G,b̄

.
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These two sentences, however, are not referentially (globally) synonymous,

λ(u)
[

I was insulted yesterday
]G,u

6≈ λ(u)
[

David Kaplan is insulted on 20 April 1973
]G,u

,

sinceIG is not denotationally equivalent withDavidKaplanG nor isYesterday1
G

with on20April1973G. Notice that the indexical ‘I’ occurs within the scope of
the modal operator ‘Yesterday’ in (K4), and in any such example in order to
account for the directly referential usage of indexicals, we choose the de-re
reading of the operators, thus translating ‘Yesterday’ asYesterday1.

Kaplan argues that (K4) has another characteristic as well.Consider two
contextsc1 andc2 which differ with respect to agent and/or moment of time—
that is, the aspects of the context of utterance which are relevant to this partic-
ular sentence. Then, its Content with respect toc1 is different with its Content
with respect toc2. Similarly, inLλ

ar,
[

I was insulted yesterday
]G,ā

6≈
[

I was insulted yesterday
]G,b̄

for statesa andb which differ in the same way asc1 andc2 do.
It is clear from the examples that at least some of the aspectsof index-

icality which Kaplan (1989) seeks to explain can also be understood using
factual content, with no need to introduce “contexts of utterance” and “con-
texts of evaluation”, which (to some) appear somewhat artificial. There are
two points that are worth making.

First, in Lλ
ar, synonymy is based on the isomorphism between two recur-

sors, which is a structural condition, whereas inLD the identity of Contents
or Characters is defined as a simple equality between two functions.

For example, consider ‘I am insulted’, a simpler version of (K4) with no
modal operator, and suppose (as above) that there are statesa andb which
differ only in the identity of the speakers, call them Agenta and Agentb. Sup-
pose also that both utterances of the sentence by the two agents are true.

To show inLD that the two relevant Contents are different, we need to
consider their values in contexts of evaluation other than that determined by
the statesa andb: the argument being that the interpretation function of the
constantbe insulted evaluated on some circumstances for the two different
agents is not the same (because there are circumstances at which Agenta is
insulted while Agentb is not), and so the two Contents are not identical. On
the other hand, the factual content of this sentence in statea is expressed by
the canonical form

be insultedG(ā)(IG(ā)) ⇒cf be insultedG(ā)(p) where {p := IG(ā)},



Two aspects of situated meaning27

and the one forb is the same, but with̄b in place ofā. So, inLλ
ar,

FC(I am insulted,a) 6= FC(I am insulted,b)

simply because
6|= IG(ā) = IG(b̄).

There is no need to consider the values of the functionbe insultedG in any
state, not even ata andb.

Second, in Lλ
ar there is the possibility to compare, in addition, the local

meanings of the two sentences (K4) and (K5) at the specific state a. As one
would expect, these are not locally synonymous ata, i.e.,

(

λ(u)
[

I was insulted yesterday
]G,u)

(ā)

6≈
(

λ(u)
[

David Kaplan is insulted on 20 April 1973
]G,u)

(ā).

This accounts for the fact that although “what is said” (the factual content) is
the same, to understand this one must know that ‘I’ and ‘yesterday’ refer to
DK and 20 April 1973 respectively; two sentences are locallysynonymous
in a state only when the fact that “they say the same thing” canbe realized
by a language speaker who does not necessarily know the references of the
indexicals in them.

5.2. What are the belief carriers?

The objects of belief must be situated meanings of some sort:can we model
them faithfully by factual contentsor local meanings, the two versions of
situated meaning that we introduced?

There are several well-known paradoxes which argue againsttaking fac-
tual contents as the objects of belief,15 but our pedestrian example (5) can
serve as well. If belief respected factual content, then in astatea in which
‘her’ is Mary, an agent would equally believe ‘John loves her’ as she would
‘John loves Mary’; but we can certainly imagine situations in which the agent
does not know that ‘her’ refers to Mary—we make this sort of factual error
all the time, and it certainly affects our beliefs. Thus factual synonymy is not
preserved by belief attribution.

Local meanings are more promising candidates for belief carriers, es-
pecially as they eliminate this sort of belief paradox whichdepends on the
agent’s mistaking the values of indexicals. Moreover, the discussion in Sec-
tion 4.5 suggests that the local meaning LM(A,a) models what has sometimes
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been called “the sentenceA under the situationa” and has been proposed as
the object of belief. So it would appear that of the known candidates, local
meanings may be the best, formal representations of belief carriers.

5.3. What is preserved under translation?

Faithful translation should also preserve some aspect of meaning, so which
is it? It is clear, again, that it cannot be factual content, as ‘John loves her’
would never be translated as ‘Jean aime Marie’, whatever thestate. Perhaps
referential (global) synonymy or local synonymy are translation invariants,
but there are no good arguments for one or the other of these—or for prefer-
ring one over the other, given how closely related they are. The question is
interesting and we have no strong or defensible views on it—but it should be
raised in the evaluation of any theory of meaning, and it almost never is.
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Notes

1. We will generally assume that the reader is reasonably familiar with Montague’s
LIL and thus it will be clear to her that we employ a rather “simplified” version
of this language, at least in what concerns the way natural language is translated
into it. On the other hand, we will describe the basic ideas ofGallin (1975)
and Moschovakis (2006), so that this article is largely independent of the details
of those papers.

2. In fact, it is convenient (and harmless) to takeTt ⊆Te, i.e., simply to assume that
the truth values 0,1,er are inTe, so that the denotations of sentences are treated
like common entities, with Frege’s approval. The extra truth value is useful for
dealing with simple cases of presupposition, but it will notshow up in this article.

3. Pedantically, types are finite sequences (strings) generated by the distinct “sym-
bols” e,s,t,(,→ and), and terms (later on) will similarly be strings from a larger
alphabet. We use ‘≡’ to denote the identity relation between strings.

4. We assume for simplicity thisstandard(largest)modelof the typedλ-calculus
built from the universesTs andTe.

5. We have assumed, for simplicity, a constantthetemp : e which we grouped with
names and indexicals, because of its typing.

6. For the examples from natural language, we will assume some plausible proper-
ties of the interpretations of these constants, e.g., that there are states in which
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some people are running while others sit, that John loves Mary in some states
while he dislikes her in others, etc. None of these assumptions affect the logic of
meaning which is our primary concern.

7. This ‘John’ is just a formal expression (a string of symbols), which, quite ob-
viously, may refer to different objects in different states. “Proper names” which
should berigid designatorsby the prevailing philosophical view are more than
strings of symbols, and in any case, the logic of meaning which concerns us here
does not take a position on this (or any other) philosophicalview.

8. We denote byπ{x := t} theupdateof an assignmentπ which changes it only by
re-assigning to the variablex : σ the objectt ∈ Tσ:

π{x := t}(vτ
i ) =

{

t, if vτ
i ≡ x,

π(vτ
i ), otherwise.

9. An alternative would be to re-type the same constants inK and distinguish be-
tween theLIL-typing and theTy2-typing ofc. The method we adopted is (proba-
bly) less confusing, and it makes it easier to express the Gallin translation ofLIL

into Ty2 below.
10. We use ‘G’ instead of Gallin’s ‘*’ and we make the state variable explicit.
11. In example (15), for simplicity, the logic constant & is not translated into &G(u)

since its denotation is independent of the state.
12. A termA is explicit if the constantwhere does not occur in it.
13. Factual synonymy can be expressed without the use of parameters by the follow-

ing, simple result:AG,ā
≈ BG,b̄ if and only if there exist terms A0, . . ., B0, . . ., as

in the Referential Synonymy Theorem 3, such that for all assignmentsπ,

if π(u) = a andπ(v) = b, then den(Ai
G,u)(π) = den(Bi

G,v)(π), (i = 0, . . .n).

The same idea can be used to define the recursor FC(A,a) directly, without en-
riching the syntax with state parameters.

14. A state inLλ
ar acts both as context of utterance, thus disambiguating all occur-

rences of indexicals, names etc, and as context of evaluation, thus evaluating the
denotations of verbs, adjectives etc.

15. See for example Russell’s “author of Waverley” example as presented in the In-
troduction of (Salmon and Soames 1988) or in (Church 1982).
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