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Abstract

We introduce two structural notions of situated meaningnfatural language sen-
tences which can be expressed by terms of Montague’s Laegofatmtensional
Logic. Using the theory of referential intensions, we definrea sentence at a par-
ticular situation itsfactual contentand itslocal meaningwhich express different
abstract algorithms that compute its reference at thatsito. With the use of char-
acteristic examples, we attempt to show the distinctivesoff these two notions in
any theory of meaning and to discuss briefly their relatiomttexicality, proposi-
tional attitudes and translation.

1. Introduction

If a speaker of the language can rationally beliévend disbe-
lieve B in the same situation, then the sentendemdB do not
have the same meaning—they are not synonymous.

The principle is old (Frege 1892), and it has been used bothtast for
theories of meaning and a source of puzzles about beliefyarmhgmy. We
think that at least some of the puzzles are due to a confusbmelen two
plausible and legitimate but distinct understandingsitfated meaninghe
factual contentand the (referentiallocal meaning

Consider, for example, the sentences

A= John loves MaryandB = John loves her

in a state (situationd in which ‘her’ refers to Mary. They express the same
information about the world in state (they have the same factual content
at that state); but they do not have the same meaning in thig, sts they
are not interchangeable in belief contexts: one may very badieve A but
disbelieveB in a, because she does not know that ‘her’ refers to Mary.

We will give precise, mathematical definitions of factuahtamt and local
meaning for the fragments of natural language which cantmedtzed in the
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Language of Intensional Logimf Montague (1973), within the mathematical
theory of referential intensionsthis is a rigorous (algorithmic), structural
modeling of meanings for the typedcalculus developed in (Moschovakis
2006), and so the article can be viewed as a contributionetéaitmal “logic
of meaning”. We think, however, that some of our results alevant to the
discussion of these matters in the philosophy of languagerahnguistics,
and, in particular, to Kaplan’s work on the logic of indexecae will discuss
briefly some of these connections in Section 5.

2. Threeformal languages

There are three (related) formal languages that we will dathl, the Lan-
guage of Intensional LogitlL of Montague (1973); the Two-sorted Typed
A-calculusTy, of Gallin (1975); and the extensidr, of Ty, by acyclic recur-
sion in (Moschovakis 2006). We describe these briefly ingkigtion, and in
the next we summarize equally briefly the theory of refeedntitensions in
LA,, which is our main technical todl.

All three of these languages start with the same, thessc types

e:entities t:truth values s: states
and, for the interpretation, three fixed, associated, moptg sets
T.=the entities T, =the states T, = the truth values= {0,1,er}, (1)

where 1 stands for truth, O for falsity aedfor “error”.? Thetypesare defined
by the recursioh
0:=e|s|t| (01— 02), (2)

and a sefl; of objects of type is assigned to eaah by adding to (1) the
recursive clause

T(s—r) = the set of all functions : Tg — Tr. 3)
For each types, there is an infinite sequence of variables of tgpe
Vg, vy, ...

which range ovefl .

It is also useful for our purpose here to assume a fixed (fisigeK of
typed constants as in Table 1, which we will use to specifyténms of all
three languages. Each constamt K stands for some basic word of natural
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Names, indexicafs  John, | he thetemp : e

Sentences itrains @ t

Common nouns man : e—t
Extensional intransitive verbs run @ e—t
Intensional intransitive verbs rise ! (s—e)—t
Extensional transitive verbs love : e—(e—t)
The definite article the : (e—t)—e
Propositional connectives & L t—(t—t)
(Basic) necessity operator O : (s—t)—t

de dicto modal operatorsYesterday, Today : (s —t) —t
de re modal operators Yesterday;, Today; : (s— (e —1t)) — (e —t)

Table 1.Some constants with thdifL -typing.

language or logic and is assigned a typerhich (roughly) corresponds to
its grammatical category; notice though, that common neunaksextensional
intransitive verbs are assigned the same tigpe- t), because they take an
argument of types and (intuitively) deliver a truth value, as in the simple
examples ofendering(formalization) inLIL,

render

John is running™™% run(John),  John is a maf™= man(John).

For the fixed interpretation, each constartf type o is assigned a function
from the states to the objects of typé

if c: o, then deric) =c: Ts — Tg. (4)

Thus John is interpreted in each stateby John(a), the (assumed) specific,
unique entity which is referred to byshn’ in statea.” The de re modal op-
eratorYesterday is interpreted by the relation on properties and individual

Yesterday(a)(p)(x) < p(a™)(x),

where for each statg a~ is the state on the preceding day, and similarly for
Today;.

Starting with these common ingredients, the languddesTy, and LA,
have their own features, as follows.

2.1. The language of intensional lodit

Montague does not admitas a full-fledged primitive type like andt, but
uses it only as the name of the domain in the formation of fonctypes.
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This leads to the following recursive definition of typed.ih:
o:=e|t|(s—o02) | (01— 02). (LIL-types)

We assume that all constants in the fixed set K atdlotype
The terms olLIL are defined by the recursion

A:=x|c|AB)|AX)(B)]|(A)|(A) (LIL-terms)

subject to some type restrictions, and edclts assigned a type as follows,
where
A:0 < thetype ofAis .

(LIL-T1) x= v? for someLIL-typeo and some, andx: 0.

(LIL-T2) cis a constant (of some Montague typg andc: C.

(LIL-T3) A: (o0 —T1),B:0candA(B) : 1.

(LIL-T4) x=v{ for someLlL-typec and some, B: T andA(x)(B) : (o — 1).
(LIL-T5) A:(s—T1)and(A): T.

(LIL-T6) A:tand TA): (s —T1).

In addition, thefree and bound occurrences of variables in each term are
defined as usual, arfdis closedif no variable occurs free in it. Aentences
a closed term of type

The construct§A) and TA) are necessary becaudé does not have vari-
ables over states, and express (roughly) application astdagtion on an im-
plicit variable which ranges over “the current state”. Tisiexplained by the
semantics otIL and made explicit in the Gallin translation bfL into Ty,
which we will describe in the next section.

Semantics of IL

As usual, arassignmenttis a function which associates with each variable
x = v some object(x) € Tq. The denotation of eachlL-termA: o is a
function

den,.(A) : Assignments— (Ts — Ty)

which satisfies the following, recursive conditions, whaye range over the
set of statedl:8
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(LIL-D1) deny (x)(m)(a) = T(x).
(LIL-D2) deny.(c)(m)(a) =c(a), asin (4).
(LIL-D3) denw (A(B))(m)(a) = (deni (A)()(a) ) (den,c (B) (1) (a)).

(LIL-D4) den(A(X)(B))(0)(a) = (t+~ den . (B)(T{x:=1})(a)),
wherex : 0 andt ranges over the objects Ty (with o aLIL-type).

(LIL-DS) den ((A))(1)(a) = (den(A)(M) (@) ) (a).

(LIL-D6) den(TA))(T)(a) = (b den, (A)(T) (b)) (= den (A)(T).

Consider the following four, simple and familiar examplesiot we will
use throughout the paper to illustrate the various notibas we introduce;
these are sentences whose denotations are independegtassignmentr,
and so we will omit it.

John loves hef™ love(John, her) 5)
den. <Iove(John, her)) (a) = love(a)(John(a), her(a))
John loves himseH™ ()\(X)Iove(x, x)) (John)  (6)

den.. <(A(x)|ove(x, X)) (John)) (@) = (t — love(@)(t,t))(John(a))
= love(a)(John(a), John(a))

The President is necessarily American

Lendey D(A(American(the(president)))) (7)
den . (D(A(American(the(president))))> (a)
— Ned(a) <b — Americarb) (the(b)(presiden(b))))
| was insulted yesterda$™ Yesterday; (‘be_insulted, ) (8)

den, . (Yesterdayl(Abe_insulted7 I)> (a)

= Yesterday(a)(den _("be_insulted)(a),den _(1)(a))
= Yesterday(a)(b — be.insultedb),(a))
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The temperature is ninety and rising
rondey (A(x)[ninety(“x)& rise(x)]) ("(thetemp)) (9)

For (9), a computation similar to those in the examples algbues the cor-
rect, expected denotation.

2.2. The two-sorted, typed;calculusTy,

The assumption that every term is interpreted in “the cursgate” and the
lack of state variables are natural enough when we thinkefdéims ofLIL
as rendering expressions of natural language, but theynaitenb and tech-
nically awkward. Both are removed in the two-sorted typechlculusTy,,
whose characteristic features are that it admits all tygdsa é2), and inter-
prets terms of type by objects inTy. We fix a set of constants

KC={c®|ceK}

in one-to-one correspondence with the consténtsf LIL®. In accordance
with the interpretation (rather than the formal typing)Li,

if c: 0, thenc®: (s — o) and deric®)(a) = c®(a) = c(a) (ae Ts),

i.e., the object® in Ty, which interpretsc® is exactly the object which
interpretsc in LIL. The terms offy, are defined by the recursion

A:=x|c®|AB) | A(x)(B) (Ty,-terms)

where nowx can be a variable of any type as in (2), and the typing of terms
is obvious. Assignments interpret all variables, inclgdinose of type, and
denotations are defined naturally:

(Ty,—D1) den(x)(m) = 1(x).
(Ty,—D2) der(c®)(m) = cC.

(Ty,—D3) der(A(B))(m) = (den(A)()) (den(B)(m).
(Ty,—D4) der(A(x)A(x))(T0) = (t ~— den(A)(T{x:=1})).

We notice the basic property of the,-typing of terms: for every assignment
T,
if A: o, then dergA)(T) € T. (10)
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The Gallin translation

For each.IL-termA and each state variablerepresenting “the current state”,
the Gallin translatiomA®" of A in Ty, is defined by the following recursive
clauses?®

XS = x
€)Y = cC(u)
A(B)| " := ASH(BOY)
AX)(A) Y = A(x)(A%Y)
]

Gu .= ABY(y)

A= A(u)ASH

By an easy recursion on thdlL-terms,A®Y has the samelL(L-) type asA,
and for every assignmemng

if Ti(u) = a, then deA®Y) () = den,(A)(T)(a).

In effect, the Gallin translation expresses formally (ivitfy,) the definition
of denotations ot.IL.
Here are the Gallin translations of the standard examplegedb

[love(John, her)]®Y = love®(u)(John®(u), her®(u)) (11)
[A(x)@ove(x,x))(John)]G’” = (M¥love®(u)(x %)) (John®(u)) (12)

[D (A(American(the(president)))) } e

=[%(u) ()\(U)AmericanG(u) (the®(u) (presidentG(u)))) (13)

G,u

[Yesterdayl(%e_insulted, I)]

= Yesterday,; ®(u) (7\(u)be_insu|tedG(u)7 IG(U)> (14)

Gu

[(A(x)[ninety(“x) & rise(x)]) (A(thetemp))}
= (A(X)[ninetyG(u)(x(u))& riseG(u)(x)]> (A(u)thetemp®(u))  (15)

Notice that the selected formal variabi®ccurs both free and bound in these
Galllin translations—which may be confusing, but poses blem.
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2.3. TheA-calculus with acyclic recursiob),

We now add tdly, an infinite sequence @écursion variablesr locations

o O
p07p1>"'

for each typeo. In the semantics of the extended language these will
vary over the corresponding univer$g just as the usualp{re) variables
vg,vy,..., but they will be assigned-to rather than quantified in thetasy;
and so they will be treated differently by the semantics. {Enms ofLélr are
defined by the following extension of the recursive defimitxd theTy,-terms:

A:=x|p|c®|AB)[NX)(B)
| Ag where {p1:=Aq,...,pn:=An} (LA-terms)
wherex is a pure variable of any type is a location of any type; and the

restrictions, typing and denotations are defined exactlpasy, for all but
the last, newacyclic recursion constructvhere they are as follows.

Acyclic recursive terms

For A= Ag where {p1 :=A1,...,pn:= Ay} to be well-formed, the following
conditions must be satisfied:

() p1,...,pn are distinct locations, such that the type of egghs the
same as that of the ter/g, and

(i) the system ofsimultaneous assignmenf®; := Aq,...,pn = A} IS
acyclig i.e., there are no cycles in tidependence relation

i =] <= p;j occurs free ink;
on the index sefl,...,n}.

All the occurrences of the locations, . .., p, in theparts A,...,A, of Aare
bound inA, and the type oA is that of itshead A. Thebodyof A is the
system{p; :=Aq,...,Pn:=An}.

To define the denotation function of a recursive téymve notice first that
by the acyclicity condition, we can assign a number (gnkto each of the
locations inA so that

if p; occurs free inA;, then rankp;) > rank(p;).
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For each assignmemntthen (which now interprets all pure and recursive vari-
ables), we set by induction on rafk),

(1) = den(A) (TH{pj, := Py, Pin = Pjiu}):

wherepj,, ..., pj, is an enumeration of the locations with répk ) < rank(p;),
(k=1,...,m), and finally,

den(A) () = der(Ag) (T{p1 := Py, Pn = Po})-

For example, if

A= ()\(x)(p(x)& q(x))) (t) where {p = A(X)ninety®(u)(r (x)),
r=AXx(U), q:=AX)rise®(u)(x), t:= )\(u)thetempG(u)}, (16)

we can compute déA) (1) = denA) in stages, corresponding to the ranks of
the parts, witha = T1(u):

Stage 1 T = (x— x(a)), SoT(x) = x(a),
g= (x+ rise®(a)(x)) = rise®(a), so that
g(x) =1 <= xis rising in statea, andf = thetemfS.

Stage 2 p = (x+ ninety®(a)(T(x))), sop(x) = 1 <= x(a) = 90.
Stage 3 denA) =p(f) &q(f), so

denA) =1 < thetem{¥(a) = 90&rise®(a)(thetem7).

We will use the familiar model-theoretic notation for demtiinal equiva-
lence,

= A=B <= for all assignmentst, denA)(1) = denB)(m).

It is very easy to check thaveryL-term A is denotationally equivalent
with a Ty,-term A, and soL), is no-more expressive tha, as far as deno-
tations go; it is, howeveintensionallymore expressive thary,, as we will
see.
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Congruence

Two LA -terms are congruent if one can be obtained from the othelphaa
betic changes of bound variables (of either kind) and rexands of the parts
in the bodies of recursive subterms, so that, for exampkyrasg that all
substitutions are free,

AX)(A{z:=x}) =cA(Y)(AM{z:=V}),
A{p:=q} where {q:=B{p:=0q}} =c Awhere {p:= B},
Awhere {p:=B,q:=C} =c; Awhere {q:=C, p:=B}.

All the syntactic and semantic notions we will define respectgruence, and
so it will be convenient on occasion to identify congruemirs.

SinceTy, is a sublanguage df},, we can think of the Gallin translation
as an interpretation dflL into LA,; and so we can apply to the termsldi.
the theory of meaning developed fo}, in (Moschovakis 2006), which we
describe next.

3. Referential intension theory

Thereferential intensiorint(A) of aL)-termAis a mathematical (set-theoret-
ic) object which purports to represent faithfully “the natualgorithm” (pro-
cess) which “computes” déA) () for eachrt. It models an intuitive notion of
meaningfor L -terms (and the natural language expressions which they ren
der), and it provides a precise relatienof synonymybetween terms which
can be tested against our intuitions and other theories ahimg that are
similarly based on “truth conditions”. Roughly:

Ax~B < int(A)=int(B) (ABinL}), (17)

where ‘Ain L), naturally means thaA is aL}-term. To facilitate the discus-
sion of meaning irLIL, we also set

~uLB < A®Y x~B% (ABinLIL). (18)

This relation models quite naturally (global) synonymy temms ofLIL.

The operationA — int(A) and the relation of referential synonymy are
fairly complex, and their precise definitions in (MoschagaR006) require
the establishment of several technical facts. Here we wilfioe ourselves to
a brief summary of the main results of referential intengtwory, primarily
so that this article can be read independently of (MoschHe\2(06).
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There are two important points to keep in mind.

First, variables and some very simplenmediate(variable-like) terms
are not assigned referential intensions: they dediméetly andimmediately
without the mediation of a meaning. Thus (17) is not exadttr it holds
for proper (non-immediate terms), while for immediate terms synonyoy
incides with denotational equality or (equivalently foese terms) congru-
ence. The distinction betweelirect andimmediatereference is precise but
not just technical: it lies at the heart of the referentiaénmsion approach to
modeling meaning, and it plays an important role in our asialgf examples
from natural language. We will discuss it in Section 3.2.

Secondthe denotational rule @-conversion
- (A(x)A) (B) = A{x:= B}
does not preserve referential synonymy, so that, for exampl
(?\(X)Iove(x, X)) (John) %L love(John, John).

This is common in structural theories of meaning in whichrieaning of a
term A codes (in particular) the logical form &, see (Moschovakis 2006)
for arelated extensive discussion. Itis good to remembghtre, especially
as we render natural language phraseslititcand then translate these terms
into Ty, and so intoL}: we want rendering to preserve (intuitive) meaning,
so that we have a chance of capturing it with the preciselynddfreferential
intension of the end result, and so we should not lose it bglessly applying
[B-conversions in some step of the rendering process.

3.1. Reduction, irreducibility, canonical forms

The main technical tool of (Moschovakis 2006) is a binaratieh ofreduc-
tion betweenL) -terms, for which (intuitively)
A=B «<— A=:B
or A andB have the same meaning
andB expresses that meaning “more simply”
The disjunction is needed because the reduction relatiatefined for all

pairs of terms, even those which do not have a meaning, fazhyhowever,
the relation is trivial. We set

Alis irreducible < for all B, if A= B, thenA=B, (29)
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so that the irreducible terms which have meaning, expregsntieaning “as
simply as possible”.

Theorem 1 (Canonical form) For each term A, there is a uniqep to con-
gruenceyecursive, irreducible term

cf(A) = Ag where {p1:=Aq,...,Pn:=An},
such that A= cf(A). We write

A= B < B=¢cf(A).

If A= B, then= A= B, and, in particular= A= cf(A).

The reduction relation is determined by ten, simglguction rulesvhich
comprise theReduction Calculusand the computation of @A) is effective.
The partsA; of cf(A) are explicit'?, irreducible terms they are determined
uniquely (up to congruence) bd; and they code the basic facts which are
needed to compute the denotation?pfn the assumed fixed interpretation of
the language. IA: t and derfA) = 1, then the irreducible parts of(&) can
be viewed as th&guth conditionswhich ground the truth of.

Variables and constants are irreducible, and so is the noonplex-looking
termA(x)love®(u)(x,x). On the other hand, the term expressing John’s self-
love in the current state is not:

()\(X)IoveG(u)(x, x)> (John®(u))
=t <)\(x)loveG(u)(x,x)) (j) where {j := John®(u)}. (20)

For a more complicated example, the canonical form of thdirGahnsla-
tion of the Partee term in (15) is the term (16). So canonioahs get very
complex, as do their explicit, irreducible parts—which @ surprising, since
they are meant to express directly the meanings of complesesgions.

The specific rules of the Reduction Calculus are at the hé#neonatter,
of course, and they deliver the subtle differences in (fdymmeaning with
which we are concerned here. It is not possible to state daiexghem in
this article—they are the main topic of (Moschovakis 200@)t the most
important of them will be gleaned from their applicationstlive examples
below.
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3.2. Direct vs. immediate reference

An important role in the computation of canonical forms iaygd by the
immediate termsThese are defined by

X:=v|p]|pV)|AMpV), (Immediate terms)

whereV = (vi,...,Vy),U0 = (Ug,...,Un) andv,vy,...,Vp,Ug,...,Uy are pure
variables, whilep is a location. Immediate terms are treated like variables
in the Reduction Calculus; this is not true of constants @her irreducible
terms) which contribute in a non-trivial way to the canohiftams of the
terms in which they occur. For exampleyn®(u)(p(v)) is irreducible, be-
causep(v) is immediate, whileun®(u)(John®(u)) is not:

run®(u)(John®(U)) =¢f run®(u)(j) where {j := John®(u)}.

In the intensional semantics b, to which we will turn next, immediate
terms referdirectly andimmediately they are not assigned meanings, and
they contribute only their reference to the meaning of lafgeoper) terms
which contain them. Irreducible terms also refer diredtlythe sense that
their meaning is completely determined by their refererud;they are as-
signed meanings, and they affect in a non-trivial (struadjuwvay the mean-
ings of larger terms which contain them.

3.3. Referential intensions

If Ais notimmediate and

A=t Ag where {p1 :=Aq,..., Pn 1= An},

then in{A) is the abstract algorithm which intuitively computes (&y{m)
for each assignmemt as indicated in the remarks following (16), as follows:

(i) Solve the system of equations

di =denA)({py:=di,p2:=0dp,...,pn:=dn}) (i=1,...,n),

(which, easily, has unique solutions by the acyclicity Hyresis).
(ii) If the solutions arepy, ..., Py, Set

den(A) (1) = der{Ao) (T{p1 = Py, Pn = Po})-
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So how can we define precisely this “abstract algorithm”? iea is
that it must be determined completely by the head\@nd the system of
equations in its body, and it should not depend on any péaticuethod of
solving the system; so it is most natural to simply identifywith the tuple of
functions

int(A) = (fo, f1,..., fn) (21)

defined by the parts @4, i.e.,
fi(da,...,dn, 1) =denA)(T{p1:=di,p2:=da,...,pn:=0dn}) (i <n).

Tuples of functions such as (21) are caltedursors

For a concrete example, which also illustrates just howratisthis notion
of meaning is, the referential intension of the Partee exartid) is deter-
mined by its canonical forlA®" in (16), and it is the recursor

int(A) = (fo, 1, f2, f3, f4),

where

fo(p,r CI,L &q(x))(t)),

(P, (x—
fi(p,r,G,t, 1) = (X — mnet)f3 (u)(r(x))),
fo(p,r q,t, = (x— x(11( )
fa(p,r,q,t, M) = (X — rise® T(u)) (X)),
f( th

p,1,q,t, 1) = etemﬁ

Theorem 2 (Compositionality) The operation A— int(A) on proper (not
immediate) terms is compositional, i.&f(A) is determined from the ref-

erential intensions of the proper subterms of A and the dgitots of its
immediate subterms.

This does not follow directly from the definition of refereitintensions
that we gave above, via canonical forms, but it is not difficolprove.

3.4. Referential synonymy

Two termsA andB arereferentially synonymoui either A = B, or int(A)
and in{B) arenaturally isomorphic Now this is tedious to make precise, but,
happily, we don't need to do this here because of the follgwin
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Theorem 3 (Referential Synonymy) For any two terms AB of L}, A is ref-
erentially synonymous with B if and only if there exist duligaerms A, ...,
Bo, ... such that

A =t Ag where {p1:=Aq,...,pn:=An},
B =t Bo where {p1:=Ba,...,pn:=Bn},
andfori=0,1,...,n,=A =B, i.e., forallty, denA)(m) = denB;)(m).
Thus the referential synonymy relatidvw B is grounded by a system of

denotational identities between explicit, irreduciblents. It is important, of
course, that the formal identities

A=B, i=0,....n

can be computed froth andB (using the Reduction Calculus), although their
truth or falsity depends on the assumed, fixed structuretefpretation and
cannot, in general, be decided effectively.

4. Two notions of situated meaning

We can now make precise the two, promised notions of situatsghing for
terms ofLIL, after just a bit more preparation.

State parameters

Intuitively, a notion of “situated meaning” of BlL-term A : T is a way that
we understand\ in a given state; and so it depends om even wherA is
closed, when its semantic values do not depend on anythasg &b avoid
the cumbersome use of assignments simply to indicate titis dependence,
we introduce goarametera for each stata, so that the definition of the terms
of L}, now takes the following form:

A:i=x|a|p|c®|A(B)|AX)(B)
| Ag where {p1:=Aq,...,pn:=An} (LA-terms)

Parameters are treated like free pure variables in the tlefirdf immediate
terms and in the Reduction Calculus; in fact, the best wahitiktof a is as
a free variable wittpreassignedralue

den@)(m) = a

which does not depend on the assignnment
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4.1. Factual content

The term B
AGa = AGUfy .= 3} (22)

expresses the Gallin translation Afat the statex—not only its denotation,
but also its meaning or at least one aspect of it. Thus, fdr peaper_IL-term
A and each stata, we set

FC(A a) = int(A%9), (23)

This is the (referentialjactual contenof A at the statex. For proper terms
A, B and states, b, we also séf

(A, a) is factually synonymouwith (B,b) < FC(A a) = FC(B,b)
s ACA OGP,

By the Referential Synonymy Theorem 3 then, we can readdasyumnonymy
by examining the canonical forms of terms. For example,

[John loves hefi® =% ove®(&)(John®(a), her®(a))
=t love®(@)(j,h) where {j := John®(@),h:= her®(@)}

and

[John loves Mary§2 =% love®(a)(John®(a), Mary®(a))
=t love®(@)(j,h) where {j := John®(@),h := Mary®(a)},

so that

if den(MaryG(é)) = der‘(herG(E)),
then [John loves hefJ? ~ [John loves Maryf2,

which expresses formally the fact that ‘John loves her’ aathh loves Mary’
convey the same “information” about the world at this statéhese two sen-
tences are not, of course, synonymous, as it is easy to \wyilye definition
of =~ ;. in (18) and Theorem 3.

Next consider example (8) which involves the indexical féeday’. In
(Frege 1918), Frege argues that
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If someone wants to say today what he expressed yesterday us-
ing the word ‘today’, he will replace this word with ‘yesterg.
Although the thought is the same, its verbal expression imeist
different in order that the change of sense which would etfser

be effected by the differing times of utterance may be céedel

out.

It appears that Frege’s “thought” in this case is best matlblethe factual
content of the uttered sentence in the relevant state.

In detail, suppose that at stai¢he speaker is DK and the time is 27 June
2005. If we consider the sentence ‘I am insulted today’ atteat a state
b =a~ when the time is 26 June 2005, the speaker is again DK andngpthi
else has changed, then, according to Frege’s remark atbaeteuld be that

[l was insulted yesterdﬁ'gz [I am insulted toda}/G'b.

This is indeed the case:

[l was insulted yesterdé}cf'aT
Tendet YesterdaylG(é) ()\(U)be_insultedG(U)7 |G(5))
=f YesterdaylG(é)(p, q) where {p:= )\(u)be_insultedG(U),q = |G(5)}

[ am insulted toda}™® % Today,%(b) (\(v)be_insulted®(v),1%(b))

= ¢t Today,®(b)(p,q) where {p:= A(V)be_insulted®(v),q := 1°(b)},

and the canonical forms of these sentences at these sttsfg tee condi-
tions of Theorem 3 for synonymy—assuming, of course, Yeaterday,; and
Today, are interpreted in the natural way, so that for thesedb,

Yesterday(a)(p)(x) <= Today(b)(p)(X) (p:Ts— (Te — T¢),x€ Te).

On the other hand, example (7) shows that, in some casesac¢hlf
content is independent of the state and incorporates thenkdning of the
term:

[The President is necessarily Americf]
render 116 (3] <)\(U)AmericanG(u)(theG(u)(presidentG(u))))
= 0(@)(q) where {q:= A(u)American®(u)(t(u)),
t := A(u)the®(u)(p(u)), p := A(u)president®(u)}.
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Notice that the state paramegeoccurs only in the head of the relevant canon-
ical form, and so, with the “necessarily always” interptieta of (] that we
have adopted, the factual content of this term is indepdmifdhe statea.

4.2. Referential (global) meaning

A plausible candidate for the (globakferential meaningf a LIL-termA is
the operation B
a int(A%?)

which assigns to each stai¢he factual content oA ata. We can understand
this outside the formal system, as an operation from statestursors; but we
can also do it within the system, taking advantage of theattsbn construct
of the typed\-calculus and setting

M(A) = int(A(u)A®Y). (24)
It follows by Theorem 3 and the Reduction Calculus that faper terms
A B,

M(A) =M(B) <= A(UASY =~ A(u)B®" «— A~ B,

and so there is no conflict between this notion of global nmega@ind the
referential synonymy relation betweéH_-terms defined directly in terms of
the Gallin translation.

The recursor MA) is expressed directly by the canonical form\¢ii) AS,
which gives some insight into this notion of formal meanikgr example:

A(u)[John loves heff* ™% A (u)love®(u)(John®(u), her®(u))
=t M(u)love®(u)(j(u),h(u)) where {j :=A(u)John®(u),h:=A(u)her®(u)}
~ M(u)love®(u)(j(u),h(u)) where {] := John®, h:= her®}
while

A(u)[John loves Maryf! “™% A (u)love®(u) (John®(u), Mary®(u))
= cf AM(W)love®(u)(j(u),h(u)) where {j := A(u)John®(u),
h:= A(u)Mary®(u)}
~ M(u)love®(u)(j(u),h(u)) where {j := John®,h:= Mary®}.
To “grasp” the meanings of these two sentences, as Fregalveay| we
need the functionfove John Mary and her—not their values in any one,

particular state, but their range of values in all stated;tarrealize that they
are not synonymous, we need only realize that ‘her’ is notri\ia all states.
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4.3. Local meaning

Once we have a global meaning Af we can compute itéocal meaning
at a statea by evaluation, and, again, we could do this outside the gyste
by defining in a natural way an operation of application of @ureor to an
argument; but since we already have application in the typedlculus, we
set, within the system,

LM (A, ) = int((A(u)A®")(a)). (25)
This is the (referentialjocal meaningof A ata. For proper terms\ B and
statesa, b, we set
(A, a) islocally synonymouwith (B,b) <= LM (A ,a) =LM(B,b)
= ()\(u)AGvu) (@) ~ ()\(V)BGN) (b).

It is important to recall here that, in general,

(Mwcs) (@ »cos,

becausds-conversion does not preserve referential synonymy.

The three synonymy relations we have defined are related easvould
expect:

Lemmal (a) Referential synonymy implies local synonymy at any state,
that is

AUWASY = A(U)B®Y = (A(WA®Y)(a) = (A(u)B®Y)(a)
(b) Local synonymy at a state implies factual synonymy at tlade st
(AM(u)ASY) (@) ~ (M(u)B®Y) (@) = A®3 ~ B®4,

Both parts of the lemma are easily proved using Theorem 3@né sim-
ple denotational equalities between the parts of the retesanonical forms.

In the following sections, we consider some examples whitlpdrticu-
lar) show that neither part of the Lemma has a valid convePsehaps most
interesting are those which distinguish between factudllacal synonymy,
and show that the latter is a much more fine-grained relatiery close in
fact to (global) referential synonymy.
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4.4. Factual content vs. local meaning
In Section 4.1, we showed that for any state
if her(a) = Mary(a), then[John loves héf? ~ [John loves Marj>2.

To check for local synonymy, we compute the canonical forhtsese terms:

()\(u)[John loves heﬁ“) (a)
rende (A(u)loveG(u)(JohnG(u),herG(u))>(5)
=ot (MWlove®(u)(j(u. h(u) ) (3)
where {j := A(u)John®(u),h:= A(u)her®(u)}
~ love®(@)(j(a),h(a)) where {j := John® h:= her®}

while
(A(u)[John loves Marﬁ’v“) (a)
rendel ()\(u)loveG(u)(John ), Mary®(

= cf ()\( Yove®( )
where {j —)\( )John (u),h:= A(u)Mary®(u)}
~ love®(@)(j(a),h(a)) where {j := John® h:= Mary®}

But her® £ Mary®, and so these two sentences are not locally synonymous
ata—although they have the same factual contert at

The example illustrates the distinction between factuatemat and local
meaning: to grasp the factual content(B€hn loves her) we only need
know who ‘her’ is at state; on the other hand, to grasp the local meaning
LM (John loves hera) we need to understand ‘her’ as a function on the states.
This is what we also need in order to grasp the (global) rafeemeaning
of ‘John loves her’, which brings us to the more difficult camipon between
local and global meaning.

4.5. Local vs. global synonymy
By the Reduction Calculus, if
ACY = ¢ Ag where {p1 :=Aq,...,pn:=An}
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then

AWASY = A(U)(Ao{p1 = aa(U),..., Pn = Gn(U)})
where {ql =AMUu)AL{p1:=q1(u),...,p1:=0an(u)},

On = A(WA{pL:=0q(U),...,pn = Qn(u)}}
and
WA (@) =¢  (A(U)(Ao{p1 = u(U),..., Pn = n(W)}))(d)
where {1 :=A(U)A1{p1 := qu(U), ..., p1 = On(U)},

On = AWA{pL = qa(U),.... Pr = an(U)}}

The computations here are by the most complex—and mosfisaymi—a-
rule of the Reduction Calculus, which, unfortunately, we caratteémpt to
motivate here. The formulas do imply, however, that for amntB,

(A(WA) (@) = (A(u)B®Y) (@)
if and only if
BSY = Bo where {p1 :=By,..., pn:= By},
for suitableBy, ..., By, so that:
Foranyi=1,...,n, D
=AU (A{PL = aa(U), -, Po = an(W)})
=AU)(Bi{p1 = au(u),...,Pn = (U)}),
and

= Aofu=al{pr:=a(a),....p=0h(a)}
=Bofu:=al{pr:=m(a),....m:=m(@} (2
On the other hand) =, Bif (1) holds and instead of (2) the stronger
FAU)(Ao{p1:=qu(u),..., pn = n(U)})
=AU)(Bo{pr:=au(u),...,pr:=0h(W)}) (2)
is true.
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Thus, local synonymy is very close to global synonymy, thly diiffer-
ence being that for global synonymy we need the heads of thdadrns to
be denotationally equal for all states, while for local syyroy at a state,
we only need their heads to be denotationally equal dthis explains why;,
by Lemma 1, the former implies the latter while the converse fail.

Natural examples which illustrate this distinction aredchtar find, but the
following one may, at least, be amusing.

Consider a particular stageat which two common nouns are co-extensive
— for example, ‘man’ and ‘human’. This was the case at the fjuseafter
God had created Adam but not yet Eve. At that statthen, the sentences
‘Adam is a man’ and ‘Adam is a human’ are locally synonymous;es

()\(u)[Adam is a mahG’“> (@)
render (A(u)manG(u)(AdamG(u))(é)
=t (A(u)manG(u)(j(u)) (@) where {j := A(u)Adam®(u)}

(Muadam is humaif*) @
=1 (A(Whuman®(u)(Adam®(u) ) (3)

=t <)\(u)humanG(u)(j(u)) (@) where {j := A(u)Adam®(u)}

and
= man®(@)(j(a)) = human®(@)(j(a)).

These sentences, of course, are not referentially synomynas they are
not even factually synonymous in any reasonable state.

4.6. Local synonymy across different states

Things get more complicated when we try to trace local symonpetween
sentences at different states. In Section 4.1, it was shbain'Yesterday |
was insulted’ uttered at a stadewhere the time is 27 June 2005 and ‘Today
| am insulted’ uttered at statewhere the time is 26 June 2005 are factually
synonymous, provided that the two states are otherwisdiodn By the
Reduction Calculus,
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()\(u) [Yesterday | was insult@é5 ’“) (a)
rendet ()\(U)YesterdaylG(u) (A(u)be_insulted®(u), |G(u))) @)
=>ot (A(U) Yesterday; ®(u)(p(u), G(1) ) (&) where
{p:=A(u)A(u)be_insulted®(u),q := A(u)I®(u)}
and

()\( )[Today | am msulte}ll‘s )
render (3 < u) Today,®(u) (A(u)be_insulted®(u ),|G(U))>(t_’)

=>or (M) Today,*(u)(p(u).o(u)) ) (b) where
{p:=A(u)A(u)be_insulted®(u), q := A(U)I®(u)},

and these two canonical forms have the same bodies, so thdyevibcally
synonymous if and only if their heads are denotationallyabdBut

- Yesterday; °(a)(p(&),q(&)) = Today,®(b)(p(b),q(b))

on the possible assumption that John is running while Magps (today and
yesterday), taking

1(p)(a) = (p)(b) =runga), m(q)(a) =John m(q)(b) = Mary

and computing the denotations of the two sides of this egudbr the as-
signmentrt, so

LM (Yesterday | was insulted) # LM (Today | am insulted).

This argument is a little unusual, and it may be easier to tataled in the
next example, where we compare the local meanings of the santence,
with no modal operator, on two different but nearly identstates. Consider
‘John runs’, ina andb:

(A(u)runG(u)(JohnG(u))> @)
S (A(u)runG(u)(j(u))) (@) where {j := A(u)John®(u))}
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(A(u)runG(u)(JohnG(u))> (b)
=t ()\(u)runG(u)(j(u))) (b) where {j := A(u)John®(u))}

Local synonymy requires that

= run®(@)(j(@)) = run®(b) (i(b)), (26)

which means that for all functions: Ts — Tk,

run®(a)(j(a)) = run®(b)(j(b)).

Suppose further that the two statesndb are exactly the same except that the
speaker is different—an aspect of the state that, intljtigmould not affect
the meaning of ‘John runs’. In particular, the interpretatiun®: s — (e — t)
of the constantun® is the same in the two states, i.e., that whoever runs at
statea also runs at statb and conversely. But unless either everyone or
nobody runs in these states, (26) fails: just take an assighmsuch as
1(j)(a) # 1(j)(b) and such that in both statesj)(a) runs whereast(j)(b)
does not run.

The examples suggest that synonymy across different ssasesomplex
relation, and that when we feel intuitively that sentencey tmave the same
“meaning” in different states, it is factual synonymy that faave in mind.

5. Situated meaningin the philosophy of language

In this section we will investigate briefly the connectiontloé proposed as-
pects of situated meaning to indexicality, propositiorttitiales and transla-
tion.

5.1. Kaplan’'s treatment of indexicals

Indexicality is a phenomenon of natural language usageebia@onnected to
situated meaning. Among its many proposed treatments ak&theory of
direct reference (Kaplan 1989) reaches some very intageséisults which
we can relate to the aspects of situated meaning introduckkiksi paper.
Kaplan’s theory is expressed formally in the Logic of Dentoats/es
(LD), where each term or formula has two semantic val@stentand
Character The Content of a term or a formula is given with respect to a
context, considered a®ntext of utterancgeand it is a function from possible
circumstances, considered emntexts of evaluatignto denotations or truth
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values, respectively. The Character of a term or a formuisthe function
which assigns to each context the Contenf\df that context.
In (Kaplan 1978), it is argued that

Thus when | say
| was insulted yesterday (K4)

specific contentwhat | said-is expressed. Your utterance of the
same sentence, or mine on another day, would not express the
same content. What is important to note is that it is not just
the truth value that may change; what is said is itself daifer
Speaking today, my utterance of (K4) will have a content hbyg
equivalent to that which

David Kaplan is insulted on 20 April 1973 (K5)

would have, spoken by you or anyone at any time.

Kaplan gives formal definitions of these notiond.in, from which it fol-
lows that at a context of utterance where the speaker is D&ajlan and
the time is 21 April 1973, the two sentences (K4) and (K5) hineesame
Content, that is the same truth value for every possiblaigistance: but, of
course, they have different Characters—(K5)’s Charastardonstant func-
tion, whereas (K4)'s clearly depends on the context of attee.

In L}, these intuitively plausible semantic distinctions camizge with
the use of the factual content and the global meaning whaakghly speak-
ing, correspond to Kaplan's Content and Character resgbgti

Supposa is a staté* where the speaker is David Kaplan (or DK for short)
and the time is 21 April 1973. As example (8) suggests, (K4) @b) are
factually synonymous &, that is

[l was insulted yesterd@cf'aT
~ [David Kaplan is insulted on 20 April 19']’%’5.

Moreover, for any statb WhereDavidKapIarP(b) is David Kaplan,

[1 was insulted yesterdé}cf'aT

~ [David Kaplan is insulted on 20 April 19T§’b.
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These two sentences, however, are not referentially (tjolsaynonymous,

A(u) [l was insulted yesterdé;cf'u
# A(u) [David Kaplan is insulted on 20 April 19']’%’“,

sincel® is not denotationally equivalent withavidKaplan® nor iSYesterdaylG
with on20April1973€. Notice that the indexical ‘I’ occurs within the scope of
the modal operator ‘Yesterday’ in (K4), and in any such exaniporder to
account for the directly referential usage of indexicals, alioose the de-re
reading of the operators, thus translating ‘Yesterdayeaserday; .

Kaplan argues that (K4) has another characteristic as Welhsider two
contextsc; andc, which differ with respect to agent and/or moment of time—
that is, the aspects of the context of utterance which aggant to this partic-
ular sentence. Then, its Content with respeat tis different with its Content
with respect tas,. Similarly, inL},

[l was insulted yesterdﬁ'gaé [l was insulted yesterd@cf'b

for statesa andb which differ in the same way ag andc, do.

It is clear from the examples that at least some of the aspédislex-
icality which Kaplan (1989) seeks to explain can also be wstded using
factual content, with no need to introduce “contexts ofrattee” and “con-
texts of evaluation”, which (to some) appear somewhat ciglfi There are
two points that are worth making.

First, in L},, synonymy is based on the isomorphism between two recur-
sors, which is a structural condition, wheread i the identity of Contents
or Characters is defined as a simple equality between twaicunsc

For example, consider ‘I am insulted’, a simpler versionk4) with no
modal operator, and suppose (as above) that there are atatekb which
differ only in the identity of the speakers, call them Aggand Ageng. Sup-
pose also that both utterances of the sentence by the twisaayertrue.

To show inLD that the two relevant Contents are different, we need to
consider their values in contexts of evaluation other timat determined by
the states andb: the argument being that the interpretation function of the
constantbe_insulted evaluated on some circumstances for the two different
agents is not the same (because there are circumstancegchtAgent, is
insulted while Agenjis not), and so the two Contents are not identical. On
the other hand, the factual content of this sentence in atstexpressed by
the canonical form

be_insulted®(a)(1°()) = be_insulted®(&)(p) where {p:=I1°(a)},
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and the one fob is the same, but with in place ofa. So, in Lgr,
FC(l am insulteda) # FC(l am insultedb)

simply because .
- 18(@) = 1°(b).
There is no need to consider the values of the fundtiemsulted® in any
state, not even a andb.
Secondin L), there is the possibility to compare, in addition, the local
meanings of the two sentences (K4) and (K5) at the specifie gtaAs one
would expect, these are not locally synonymous, ak.,

(M(u) [l was insulted yesterda§™) (a)
# (A(u)[David Kaplan is insulted on 20 April 19'}’%’”)(5}.

This accounts for the fact that although “what is said” (thetdial content) is
the same, to understand this one must know that ‘I’ and ‘yéate refer to
DK and 20 April 1973 respectively; two sentences are locgylgonymous
in a state only when the fact that “they say the same thing”tEanealized
by a language speaker who does not necessarily know themeés of the
indexicals in them.

5.2. What are the belief carriers?

The objects of belief must be situated meanings of some santwe model
them faithfully byfactual contentsor local meaningsthe two versions of
situated meaning that we introduced?

There are several well-known paradoxes which argue agikisiy fac-
tual contents as the objects of belléfput our pedestrian example (5) can
serve as well. If belief respected factual content, then stagea in which
‘her’ is Mary, an agent would equally believe ‘John loves’ lzar she would
‘John loves Mary’; but we can certainly imagine situationsvhich the agent
does not know that ‘her’ refers to Mary—we make this sort atdal error
all the time, and it certainly affects our beliefs. Thus tettsynonymy is not
preserved by belief attribution.

Local meanings are more promising candidates for beliefierar es-
pecially as they eliminate this sort of belief paradox whitdpends on the
agent's mistaking the values of indexicals. Moreover, tiseussion in Sec-
tion 4.5 suggests that the local meaning (Avla) models what has sometimes
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been called “the sentenéeunder the situatio@” and has been proposed as
the object of belief. So it would appear that of the known ddaies, local
meanings may be the best, formal representations of beligecs.

5.3. What is preserved under translation?

Faithful translation should also preserve some aspect ahing, so which
is it? It is clear, again, that it cannot be factual content,Jahn loves her’
would never be translated as ‘Jean aime Marie’, whatevesttite. Perhaps
referential (global) synonymy or local synonymy are tratish invariants,
but there are no good arguments for one or the other of theséa+prefer-
ring one over the other, given how closely related they atee question is
interesting and we have no strong or defensible views on it-iishould be
raised in the evaluation of any theory of meaning, and it atmever is.
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Notes

1. We will generally assume that the reader is reasonabliifarwith Montague’s
LIL and thus it will be clear to her that we employ a rather “siringdi” version
of this language, at least in what concerns the way natungliage is translated
into it. On the other hand, we will describe the basic idea&allin (1975)
and Moschovakis (2006), so that this article is largely petedent of the details
of those papers.

2. Infact, itis convenient (and harmless) to tdkeC T., i.e., simply to assume that
the truth values (1, er are inT,, so that the denotations of sentences are treated
like common entities, with Frege’s approval. The extrattrvailue is useful for
dealing with simple cases of presupposition, but it will sledw up in this article.

3. Pedantically, types are finite sequences (strings) gésakby the distinct “sym-
bols”e,s,t, (,— and), and terms (later on) will similarly be strings from a larger
alphabet. We use=’ to denote the identity relation between strings.

4. We assume for simplicity thistandard(largest)modelof the typedA-calculus
built from the universe%, andT..

5. We have assumed, for simplicity, a constdrtemp : e which we grouped with
names and indexicals, because of its typing.

6. Forthe examples from natural language, we will assumegaausible proper-
ties of the interpretations of these constants, e.g., treetare states in which
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some people are running while others sit, that John lovey lilasome states
while he dislikes her in others, etc. None of these assumgtdfect the logic of
meaning which is our primary concern.

. This ‘John’ is just a formal expression (a string of symbols), whichitgub-
viously, may refer to different objects in different stat&Broper names” which
should berigid designatorshy the prevailing philosophical view are more than
strings of symbols, and in any case, the logic of meaninglwbéncerns us here
does not take a position on this (or any other) philosophieay.

. We denote byy{x:=t} theupdateof an assignmentwhich changes it only by
re-assigning to the variable o the object € Tg:

] T t, if vi =X,

mx= v = {n(vf), otherwise

. An alternative would be to re-type the same constanks and distinguish be-
tween theLIL-typing and theTy,-typing of c. The method we adopted is (proba-
bly) less confusing, and it makes it easier to express thénGednslation ofLIL
into Ty, below.

10. We useG' instead of Gallin’s “** and we make the state variable exgili

11. In example (15), for simplicity, the logic constant & istitranslated into & (u)

since its denotation is independent of the state.

12. AtermAis explicitif the constantvhere does not occur in it.

13. Factual synonymy can be expressed without the use ahedeas by the follow-
ing, simple resultA®2 ~ BCP if and only if there exist termseA .., By, ..., as
in the Referential Synonymy Theorem 3, such that for algassentsr,

if T(u) = aandm(v) = b, then deA;®Y) (1) = denB;®V)(m), (i=0,...n).

The same idea can be used to define the recursph E directly, without en-
riching the syntax with state parameters.

14. A state inlL, acts both as context of utterance, thus disambiguatingcalire
rences of indexicals, names etc, and as context of evatydhios evaluating the
denotations of verbs, adjectives etc.

15. See for example Russell’'s “author of Waverley” examplpresented in the In-

troduction of (Salmon and Soames 1988) or in (Church 1982).
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