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In his development of formal semantics for natural language Montague [1970a]–
Montague [1973],1 Richard Montague modeled the meaning (Frege’s sense) of a
term A by its Carnap intension CI(A), the function which assigns to each state a,
specifying a “possibleworld”, “time” and“context of use”, the denotationden(A)(a)
of A in that state. Now this is surely not right: among other things, it makes “there
are infinitelymany odd numbers” synonymouswith “there are infinitelymany prime
numbers”, which it is not.2 At the other extreme, “structural” approaches to the
modeling of meaning (like Russell’s propositions,3 Church [1946]–Church [1974]
andCresswell [1985]) basically tell us nomore than that “the sense of a complex term
A can be determined from the syntactic structure ofA and the senses or denotations
of the basic constituent parts ofA”, without explaining how this “determination” is
to take place. But, to oversimplifyDavidson’s eloquent criticism inDavidson [1967],
Theaetetus and the property of flying do not (by themselves) amount to themeaning
of “Theaetetus flies”: we would like to know just what kind of objects meanings
are, and how the meaning of “Theaetetus flies” is determined by the meanings of
‘Theaetetus’ and ‘flying’.
In Moschovakis [1994] I argued that the meaning of a term A can be faithfully
modeled by its referential intension int(A), an (abstract, idealized, not necessarily
implementable) algorithmwhich computes the denotation ofA. The basic technical
tool in that paper was the Formal language of recursion FLR, for which the theory of
referential intensions can be developed rigorously, and the applications to fragments
of natural language were to come by “formalizing” (translating, rendering) them
into FLR. Here I will develop the theory of referential intensions for the formal
language Lëar, which extends the typed ë-calculus and so can accommodate (via the
work of Montague) reasonably large fragments of natural language.
The claim thatmeanings are algorithms is a philosophical one, but this is primarily
a paper in logic, not in the philosophy of language or in linguistics. Every discussion

The paper developed from a set of notes produced for a short course in NASSLLI ’03.
I am grateful to UweMönnich, LarryMoss, Isidora Stojanovic and the anonymous referees for many

useful suggestions, and (especially) Fritz Hamm and my student Eleni Kalyvianaki, for innumerable
conversations on the topic of this paper and invaluable criticism of early drafts. Kalyvianaki’s most
important contributions are invisible: she found errors and corrected some of the statements and
(especially) the proofs which have been omitted from this paper.
Some of the missing proofs are posted on http://www.math.ucla.edu/∼ynm/papers.htm.
1These have all been reprinted in Montague [1974], which also contains additional, relevant articles.
2A distinction between “meaning” and “sense” is introduced inMontague [1970c][Section 4] to allow

a de re evaluation of demonstratives, but this does not affect mathematical assertions.
3See Pelham and Urquhart [1994].
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2 YIANNIS N. MOSCHOVAKIS

of a natural language example will start with an assertion of the form

(1) every man loves some woman

render
−−−→ every(man)(ë(u)some(woman)(ë(v)loves(u, v))),

which will be explained and motivated when not obvious, but cannot be rigorously
justified, as I will not specify with any precision the all-important rendering (or

translation) operation . . .
render
−−−→ A.4 Some would argue that this is the most im-

portant part of the extraction of meanings from linguistic expressions, and I would
agree with them. On the other hand, I think that the theory of what-happens-next
proposed here may be of some value, primarily because of two reasons.
First, the modeling of meanings by referential intensions goes far beyond the
imagery and analogy with computation often used to explain the relation between
Frege’s sense and denotation, especially by Dummett.5 The explication of meaning
by abstract algorithm is analogous to the “definition” of ordered pairs in axiomatic
set theory: necessarily complex and somewhat forbidding at first sight, it codifies
the structural properties of a specific understanding of meaning which (with some
effort) can be understood intuitively and used for direct philosophical and linguistic
analysis independent of the technicalities.
Second, the formal processing of Lëar-terms (the “calculus” of the title) sets con-
ditions and limitations on the rendering operation, it provides new ways to imple-
ment some syntactic transformations which affect meaning (like co-indexing and
co-ordination), and for some English phrases, it suggests some plausible, novel ren-
derings directly in Lëar which are not referentially synonymous with any terms of the
typed ë-calculus. The examples in §3.24 – §3.27 are admittedly very simple, but
they employ general methods which may prove useful in computational semantics.
The technical part of the paper—the logic—is foundmostly in Sections 1 and 3. It
is illustrated andmotivated by a number of simple examples in the middle Section 2,
and by a discussion of two relevant, standard puzzles about meanings in Section 4.
The last, pretentiously titled Section 5 reviews and motivates briefly the connection
between algorithms andmeanings, and the specific, mathematical notion of abstract
algorithm which I use to model meanings.

4In fact the full rendering operation is of the form

natural language expression + context
render
−−−→ formal expression + state,

where the (informally understood) context determines not only the state (as we will make it precise
in Subsection §2.2), but also which precise reading of the expression is appropriate and what formal
transformations should be made (e.g., co-indexing), depending on information about “what the speaker
meant”, intonation, if the expression was spoken, punctuation and capitalization, if it was written, etc.
I will have nothing to say about these factors and how they determine the formal state, and so I will
concentrate on the simpler, syntactical component of rendering

natural language expression
render
−−−→ formal expression

for which the subsequent extraction of meaning will provide some suggestions.
5Cf. the discussion and the references to Dummett [1978] and Evans [1982] in the introduction

to Moschovakis [1994].
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A LOGICAL CALCULUS OF MEANING AND SYNONYMY 3

Names of “pure” objects 0, 1, 2, ∅, . . . : e

Names, demonstratives John, I, he, him, today : ẽ

Common nouns man, unicorn, temperature : ẽ → t̃

Adjectives tall, young : (ẽ → t̃)→ (ẽ → t̃)
Propositions it rains : t̃

Intransitive verbs stand, run, rise : ẽ → t̃

Transitive verbs find, loves, be : ẽ × ẽ → t̃

Adverbs rapidly : (ẽ → t̃)→ (ẽ → t̃)

Table 1. Empirical constants.

In lectures on this topic, I sometimes use the subtitle “derived by taking program-
ming languages seriously”, to emphasize the dependence of this theory on algo-
rithmic ideas, which goes much deeper than the modeling of meanings by abstract
algorithms.

§1. The typed ë-calculus with acyclic recursion, Lëar. The language Lëar is a typed
calculus of terms, an extension of the two-sorted type theory Ty2 of Gallin [1975][§8]
into which the language of intensional logic LIL of Montague [1973] can be inter-
preted by Gallin’s Theorem 8.2.6 Each term A of Lëar is tagged with a type ó, and
(for each assignment g to its free variables) denotes an object den(A)(g) in some
specified universe Tó of objects of type ó.

7 We will give a brief description of Lëar,
following closely Gallin [1975] and concentrating on the two substantial ways in
which Lëar extends Ty2.

§1.1. Syntax. This is determined by the types, the constants, the variables and
the terms.
Types are defined recursively, starting with the basic types e of entities, t of
truth values, and s of states, and allowing the formation of arbitrary function types
(ó → ô). In the shorthand used for simple recursive definitions by computer
scientists,8

ó :≡ e | t | s | (ó1 → ó2)(Types)

6Gallin is concerned only with showing that each term of LIL is denotationally equal (in a suitable
sense) with a term of Ty2, and does not worry about meanings. His interpretation can be combined with
themethods of this paper to assign natural, robustmeanings to the terms ofLIL, but this requires a careful
comparison of LIL with Lëar and we will leave it for the forthcoming Kalyvianaki and Moschovakis [].
7LIL does not have a symbol s for the type of “state” or variables which range over states, and each

term A of type ó defines a function CI(A) : Ts → Tó from the states to the objects of type ó. Perhaps
Montaguemade these choices because we cannot explicitly refer to the state in natural language, although
like every formal language, LIL has terms which do not render anything we could utter, including free
variables (of any type). The lack of state variables causes considerable awkwardness in the development
of logic, and the (effective) absence of pure types interferes with the development of a satisfactory theory
of meaning for mathematical statements.
8I use “≡” for the identity relation between the syntactic objects of Lëar (types and terms), to avoid

confusion with “=”, which is itself a syntactic object denoting the identity relation between the objects
that Lëar is about.
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4 YIANNIS N. MOSCHOVAKIS

i.e., the set of types is the smallest set which includes the distinct “symbols” e, t, s

and is closed under the pairing operation (ó1 → ó2). A type is pure (or state-free)
if the state type s does not occur in it:

ó :≡ e | t | (ó1 → ó2).(Pure types)

Especially significant for the intended interpretations are the types (s → ó) of
“state-dependent” objects: in particular, we let

t̃ ≡ (s → t) ≡ the type of Carnap intensions,(2)

ẽ ≡ (s → e) ≡ the type of Carnap individual concepts.(3)

It is also useful to introduce the notation

q̃ ≡ (ẽ → t̃)→ t̃ ≡ the type of (state-dependent) unary quantifiers,

which will type terms like “every woman”, “some man”, etc.
As is usual in the ë-calculus, we also set

ó1 × ó2 → ô ≡ (ó1 → (ó2 → ô)),

so that ó1 × ó2 → ô is the type of functions of two variables, which are “identi-
fied” with function-valued unary functions. This “currying” convention extends
naturally to types and functions of three or more variables.
The types of Lëar specify kinds of semantic objects, and should not be confused
with the syntactic categories of natural language. Many syntactic categories may
be mapped onto the same type: for example, intransitive verbs (run) and proper
nouns (man) are both rendered by terms of the same Lëar-type (ẽ → t̃), although
their syntactic categories are obviously distinct.
Constants. We assume given a (finite) setK of typed constants, the “vocabulary”,
and we write c : ó to indicate that c has type ó. Examples of constants are given
in Table 1, but we will add more later on—including the usual logical constants in
Table 3. Notice the absence of propositional attitudes (believe that, assert that) with
which we will not deal in this paper, except for some comments.
The syntactically correct terms depend on the choice ofK , and so wewrite Lëar(K)
for the language determined from a specific K .
Variables. For each type ó, Lëar has two infinite sequences of variables,

• the pure variables vó0 , v
ó
1 , . . . , and

• the recursion variables or locations pó0 , p
ó
1 , . . .

Syntactically, pure variables are quantified, while locations are assigned-to. The
separation of these two roles of variables is essential in the development of the
intensional semantics of Lëar.
Terms are defined recursively, starting with the variables and the constants and
using application, ë-abstraction and (mutual) acyclic recursion, whichwewill explain
in the next paragraph. The definition also assigns a type to every term and specifies
the free and bound occurrences of variables in it. We write

A : ó ⇐⇒ A has type ó,

and in accordance with the currying convention discussed above, ifA : ó1×ó2 → ô,
B : ó1 and C : ó2, we write synonymously

A(B,C ) ≡ A(B)(C ).
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A LOGICAL CALCULUS OF MEANING AND SYNONYMY 5

A :≡ c | x | B(C ) | ë(v)(B) | A0 where {p1 := A1, . . . , pn := An}

c is a constant of type ó, and (as a term) c : ó

x is a variable of either kind, of type ó, and (as a term) x : ó

C : ó, B : (ó → ô), and B(C ) : ô

B : ô, v is a pure variable of type ó, and ë(v)(B) : (ó → ô)

n ≥ 1, Ai : ói , p1, . . . , pn are distinct locations, pi : ói ,
the system {p1 := A1, . . . , pn := An} is acyclic,
and A0 where {p1 := A1, . . . , pn := An} : ó0

In addition (recursively) all occurrences of v are bound in ë(v)(B), and all
occurrences of p1, . . . , pn are bound in A0 where {p1 := A1, . . . , pn := An};
occurrences of variables not bound by this clause are free.

Table 2. The terms of Lëar(K).

Table 2 summarizes the definition with all the necessary side conditions, except for
acyclicity, which we define next.

§1.2. Acyclic recursion. The best, intuitive way to understand the recursive con-
struct is to read “where” more-or-less normally:

loves(j, s) where {j := John, m := Mary, s := sister(m)}

communicates the same information as

if j is John, m is Mary, and s is the sister of m, then j loves s,

in other words “John loves Mary’s sister”—and, as we will prove, this term is
referentially synonymous with

loves(John, sister(Mary))

which renders “John loves Mary’s sister”.
Formally, a system of assignments {p1 := A1, . . . , pn := An} is acyclic if it is
possible to associate a natural number rank(pi) with each of the locations, so that

if pj occurs free in Ai , then rank(pi) > rank(pj);

the obvious idea is that pi has higher rank than pj if its value “depends” (or could
depend) on that of pj . For example, the system

{f := father(m), m := mother(j), j := John} is acyclic,

with rank(j) = 0, rank(m) = 1, rank(f) = 2, while the one-assignment system

{p := c(p)} is not acyclic,

December 13, 2004



6 YIANNIS N. MOSCHOVAKIS

because any ranking of p would need to satisfy rank(p) > rank(p), which it cannot.
Acyclic systems express “trivial” systems of “recursive definitions”which “close off”
(and produce unique values) in a finite number of steps.9

§1.3. Congruence. Two terms are congruent if one can be obtained from the other
by alphabetic changes of the bound variables and re-orderings of the assignments
within the acyclic recursion construct. Formally, congruence is the smallest equiv-
alence relation ≡c between terms which respects alphabetic replacement of bound
variables (of both kinds), application, ë-abstraction and acyclic recursion, and such
that for any permutation ð : {1, . . . , n} → {1, . . . , n},

A0 where {p1 := A1, . . . , pn := An}

≡c A0 where {pð(1) := Að(1), . . . , pð(n) := Að(n)},

so that, for example,

A where {p := B, q := C} ≡c A where {q := C, p := B}.

The last condition means that the assignments within { } are interpreted as a set,
not a sequence. Both the denotational and intensional semantics of Lëar(K) will
respect congruence, and so we will sometimes tacitly identify congruent terms.

A term A is explicit if the constant where does not occur in it; recursive if it is of
the form A0 where {p1 := A1, . . . , pn := An}; and a ë-calculus term if it is explicit
and no recursion variable occurs in it, i.e., if it is a term of Gallin’s Ty2. A term is
closed if it has no free occurrences of variables.
As is usual, we will “misspell” types and terms, skipping parentheses and font-
changes, inserting brackets to indicate grouping, writing “A loves B” and “A = B”
rather than “loves(A)(B)” and “= (A)(B)”, etc. It will also be useful to allow on
occasion the dummy recursion construct A where { } as a misspelling of A, i.e.,

A where { } ≡def A.(4)

§1.4. Denotational semantics. Lëar(K) is interpreted in structures of the form

A = ({Tó}ó∈Types, {c}c∈K , den)

satisfying the following conditions (S1) – (S4):

(S1) Each Tó is a set. We further assume that the set of entities Te contains (at
least) three distinct objects 0, 1, er; that the set of states Ts is not empty; and (for
convenience) that the set of truth values Tt coincides with the set of entities,

Tt = Te.

(S2) Each p ∈ T(ó→ô) is a function p : Tó → Tô .
(S3) If c : ó, then c ∈ Tó .

9If we remove the acyclicity restriction on the recursion construct, we obtain the ë-calculus with full
recursion Lër , a mild extension of the language PCF which has been extensively studied by computer
scientists, cf. Plotkin [1977]. Essentially all the results of this paper can be extended to Lër , but at a heavy
price in mathematical technicalities, starting with the need to develop different (and substantially more
complex) denotational semantics. Full recursion is admitted in FLR, and some applications of it to the
philosophical analysis of self-reference were included in Moschovakis [1994]; it is a moot point whether
its extension to Lëar can contribute enough to computational semantics to be worth the considerable extra
work.
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A LOGICAL CALCULUS OF MEANING AND SYNONYMY 7

(S4) den is a function which associates with each term A : ó and each assignment g
to the variables an object den(A)(g) ∈ Tó so that the following conditions hold:

10

(D1) den(x)(g) = g(x); den(c)(g) = c.
(D2) den(A(B))(g) = den(A)(g)(den(B)(g)).
(D3) den(ë(v)(B))(g) = h, where, for all t, h(t) = den(B)(g{v := t}).
(D4) den(A0 where {p1 := A1, . . . , pn := An})(g)

= den(A0)(g{p1 := p1, . . . , pn := pn}),
where the values pi are defined for i = 1, . . . , n by recursion on rank(pi ):

pi = den(Ai)(g{pk1 := pk1 , . . . , pkm := pkm}),

where pk1 , . . . , pkm are the variables with ranks lower than rank(pi ).

It is easy to check (by induction on the terms) that at most one denotation function
satisfying (S4) exists (for any given choice of Tó so that (S1) – (S3) holds), and
that den(A)(g) depends only on the values g(x) for those variables which have free
occurrences in A. For denotational term equality we will use the familiar notation
from logic,

|= A = B ⇐⇒ for all assignments g, den(A)(g) = den(B)(g).(5)

The structure A is standard if for all ó, ô,

T(ó→ô) = the set of all functions p : Tó → Tô .

A standard A is determined by the basic sets Te, Ts and the interpretations c 7→ c
of the constants, as (S4) can then be viewed as a recursive definition of the (unique)
denotation function.
To illustrate the computation of denotations in the recursive case, consider the
closed term

(6) A ≡ p& q where {p := loves(j,m), q := dislikes(j, h),

h := husband(m), j := John, m := Mary}.

Assuming that the indicated constants name the obvious objects and relations, we
compute the denotation of A in stages, as follows:

Stage 1: j := John, m := Mary
Stage 2: h := husband(m) = Mary’s husband

p := loves(j,m) = the truth value of “John loves Mary”
Stage 3: q := dislikes(j, h)

= the truth value of “John dislikes Mary’s husband”
Stage 4: den(A) = p& q

so that, finally,

den(A) = the truth value of “John loves Mary and he dislikes her husband”.

10An assignment (or valuation) is a function g which assigns to each pure or recursion variable x of
type ó an object g(x) ∈ Tó . If x : ó is a variable and t ∈ Tó , then the update of g by the assignment
x := t is defined in the obvious way,

g{x := t}(y) =

{

t, if y ≡ x,

g(y), otherwise.
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8 YIANNIS N. MOSCHOVAKIS

§1.5. The intended interpretation. To interpret natural language in A, we assume
that Te contains the natural numbers N = {0, 1, . . . }, the real numbers and other
mathematical objects, but also people (dead or alive, or who might live in some
alternate universe), trees, points in spacetime, etc.11

A state a (intuitively) specifies a “full context” in which the terms of Lëar(K) can
be interpreted. We will say more about states in Section 2, but, for the technical
definitions in this section, all we need is that Ts is some non-empty set. The pure
objects are built up from the members of Te and do not depend on the choice of Ts.
Finally, the identificationTe = Tt sounds a bit peculiar, but it is both economical
and useful: we identify “truth” with the number 1, “falsity” with the number 0, and
we assign er (error) to terms of type e or t which have no natural truth value. The
correct interpretations of the constants should assign er to both “Mary’s husband”
and “Mary’s husband is tall”, if Mary is not married or has more than one husband.
It is sometimes not clear (or a matter of choice) whether a phrase should be
rended by a constant or a term. For example, the language might have a constant
husband, or render “Mary’s husband” with the term the(ë(x)married(x,Mary)).
We will make such choices explicit, when we need to be specific, without taking a
position on which is “the right choice”.
Whether the intended A is standard or not is a philosophical question: some
might admit in the model only those individual concepts and Carnap intensions
which are definable. One of the methodological principles which underlies this
work is that logic should provide a framework for philosophical inquiry and linguistic
analysis, but should not decide between coherent philosophical alternatives or plausible
formalizations of natural language phrases. So for the remainder of this paper, we fix
one (possibly non-standard) structure, without placing on it any restrictions beyond
(S1) – (S4).

§1.6. Formal replacement and the replacement property. As usual, if A is a term,
x is a variable or a constant of type ó and C is a term of type ó, then

A{x :≡ C} ≡ the result of replacing x by C in all its free occurrences in A,

where, of course, all occurrences of a constant are free. The replacement is free if
no free occurrence of a variable in C becomes bound in A{x :≡ C}, and in this
case, easily, for every assignment g, if x is a variable

den(A{x :≡ C})(g) = den(A)(g{x := den(C )(g)}),

and if x ≡ c is a constant, then

if den(c) = den(C )(g), then den(A{c :≡ C})(g) = den(A)(g).

We will tacitly assume that all replacements are free when we apply this operation.

§1.7. Lëar vs. the typed ë-calculus. It can be easily shown that every term with no
free locations is denotationally equal to an explicit term, so that, as far as denotations
go, there is no need for the acyclic recursion construct. On the other hand, we will
show that Lëar is intensionally more expressive than Gallin’s Ty2, for example the term
A in (6) is not referentially synonymous with any explicit term (so long as the
constants which occur in it are not given truly perverse interpretations).

11If we put all sets in Te, as we should, then it is a proper class and not a set. I will disregard this
technical wrinkle, which can be easily corrected by introducing some irrelevant technicalities.
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A LOGICAL CALCULUS OF MEANING AND SYNONYMY 9

§2. Examples. Beyond fleshing out some of the formal definitions of Section 1,
the simple examples in this section will help illustrate the modeling of meaning
coming up next. To facilitate discussing meanings in the examples, let us jump the
gun and introduce here the notation

A ≈ B ⇐⇒ A and B are referentially synonymous.(7)

The precise definition is given in §3.21.

First a cautionary note.

§2.1. â-conversion. This is the most basic rule of the ë-calculus: if the variable u
and the term B have the same type, and if the substitution is free, then

|=
(

ë(u)A
)

(B) = A{u :≡ B}.(â-conversion)

For example,

|=
(

ë(j)loves(j, j)
)

(John) = loves(John, John).

The rule of â-conversion does not hold for referential synonymy, in fact
(

ë(j)loves(j, j)
)

(John) 6≈ loves(John, John);

this is not unexpected, because these terms render English sentences which are not
usually perceived as synonymous,12

John loves himself
render
−−−→

(

ë(j)loves(j, j)
)

(John),(JLH)

John loves John
render
−−−→ loves(John, John).(JLJ)

In fact, â-conversion almost never preserves meaning, just as logical deduction does
not—otherwise all theorems would be synonymous, which is absurd; so it is impor-
tant not to assume it unthinkingly in analyzing the examples.

§2.2. States. To be specific, wewill assume in this paper that a state is a quadruple

a = 〈i, j, k, A, ä〉

which specifies a possible world i , a moment of time j, a point in space k, a speaker
(or “agent”) A, and a function ä which assigns values to all possible occurrences
of proper names and demonstratives, indexed by the order in which they appear in
terms: so it might be that

ä(John1) = John Steinbeck, ä(John2) = John Wayne, . . . ,

ä(I1) = Yiannis Moschovakis, . . . , ä(today1) = August 4, 2004 . . .

For example, to determine the truth value of

“John loves her and she loves him”,

12One can argue that to understand (JLH) you need to know how to render himself, which you do
not need to understand (JLJ); and from the computational point of view, that to compute the truth value
of (JLJ) you need to compute the reference of John twice, while to decide (JLH) you need compute that
reference only once.
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10 YIANNIS N. MOSCHOVAKIS

we must know when the sentence was asserted (because love fades), but also who
“John”, “her”, “she”, “him” are—and there could be as few as two and as many as
four persons involved.
We will refer to the values specified by a state as

world(a), time(a), agent(a), John1(a), I1(a), he2(a), etc,

and we will leave open the question of which states exist in the basic set Ts of the
intended interpretation A, in accordance with the discussion in §1.5. The choice
of Ts does not affect the way in which the denotations and referential intensions of
terms in A are computed; but it does, of course, determine their values, and so, to
explore the examples, we will sometimes make some innocuous assumptions—e.g.,
that it may rain in some states while it is sunny in others, so that, in particular, there
are at least two states. Such assumptions will be natural and non-controversial:
we will not need to consider whether there are states in which agent(a) 6= I(a), or
today1(a) 6= today2(a) which touch on difficult questions of philosophy and the
expressibility of natural language.

§2.3. Carnap objects of type (s → ó); rigidity. These include the denotations of
proper names like John and the demonstrativesHe, her, today, . . . , of type ẽ, as well
as the Carnap intensions of type t̃, for example it rains, for which

it rains(a) = 1 ⇐⇒ it is raining in the state a.

A Carnap object x : (s → ó) is rigid if, for all states a, b, x(a) = x(b); and a
closed term A : (s → ó) is rigid if it denotes a rigid object, i.e., a constant function
p : (s → ó) such that p(a) = y for some fixed y : ó.
If we set13

dere(x, a)(b) = x(a) (x : s → ó, a, b ∈ Ts)(8)

then the object dere(x, a) : (s → ó) is rigid and denotes x(a) in every state. It
is quite standard in philosophy of language today to assume that at least some
historical proper names (“Aristotle”) are rigid, but we will neither assume nor
forbid this here.

§2.4. Connectives, quantifiers and the identity relation. The “pure” operations of
logic which we use to express mathematical sentences are objects of pure type, e.g.,

¬ : t → t, & : t × t → t, . . .

and they are defined as usual on Tt = Te , with 1 and 0 standing for truth and falsity
and the obvious treatment of errors: for example,

¬(t) =

{

1− t, if t ∈ {0, 1},

er, otherwise
, &(s, t) =

{

min(s, t), if s, t ∈ {0, 1},

er, otherwise

13This is really Kaplan’s dthat(x, a) in Kaplan [1978a], but I am using a different notation to avoid
confusion, since Kaplan’s understanding (and use) of this important construct is somewhat different
from the present one. The notation dere(x, a) comes from the use we will make of these functions later
on to distinguish between “de re” and “de dicto” readings of terms in modal contexts. I am not assuming
that the language has a constant dere—I wouldn’t know the English word for it.
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etc. More interesting for the natural language examples are the state-depended
versions of these operations, for which we use the same notations: the types of these
are specified in Table 3 and their definitions are again obvious, e.g.,

¬(p, a) = ¬(p(a)), = (p, q, a) =











1, if p(a) = q(a) 6= er,

0, if p(a), q(a) ∈ Te and p(a) 6= q(a),

er, otherwise, i.e., if p(a) = er or q(a) = er,

and leaving out the treatment of errors (as we will always do in the sequel),

every(p)(q)(a) ⇐⇒ (∀x : (s → e))[¬p(x, a) ∨ q(x, a)].

For a (pedantically spelled out) example of term-formation with these constants,
consider (1).

§2.5. Modal operators. We assume the language has a constant� for the basic ne-
cessity operator,Montague’s “full necessity”, or “necessarily always”, as Thomason
calls it:

�(p)(a) ⇐⇒ (∀b)p(b).

Kaplan [1978b] argues convincingly that this interpretation is inappropriate for
terms which contain demonstratives, but in our determination to avoid philosoph-
ical commitments, it is best to allow his interpretation as a de re reading of the
modality, without forbidding the de dicto reading. With the notation

�2(p, x, y) ⇐⇒ x and y necessarily have property p (p : ẽ × ẽ → t̃, x, y : ẽ)

for binary properties (and �n for n-ary ones), the correct definition is

�2(p, x, y)(a) = �(p(dere(x, a), dere(y, a)))(a).

For example, with a primitive reside : ẽ × ẽ → t̃ for “x is in place y”, this allows
four readings for “I am necessarily here”,

�(reside(I, here)), �1(ë(x)reside(x, here), I),

�1(ë(y)reside(I, y), here), �2(reside, I, here),

of which the first conveys the information that “the speaker is necessarily at the place
the utterance is made” and the last one claims that “Moschovakis is necessarily in
Phaliron, Greece” if I were to say something as I write this; Kaplan would disallow
all but the last, which is, of course, false.
The technique works for any modal operator: for the unary case, if F : (t̃ → t̃),
then

F1(p, x)(a) = F (p(dere(x, a)))(a)

produces the corresponding de re version, with type (ẽ → t̃)× ẽ → t̃.
For serious work on the modal part of the language, we would obviously need to
introduce additional modal constants, in the past, in all possible worlds (but at the
present time and location), etc.
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= : ẽ × ẽ → t̃

¬,�, in the future : t̃ → t̃

&,∨ : t̃ × t̃ → t̃

every, some : (ẽ → t̃)→ q̃

the : (ẽ → t̃)→ ẽ

Table 3. Logical constants.

§2.6. Descriptions. The natural definition of the description operator returns an
error if the existence and uniqueness conditions are not fulfilled:

the(p)(a) =

{

the unique y ∈ Te such that p(b 7→ y, a), if it exists,

er, otherwise,

where b 7→ y is the constant function on the states with value y. Notice that we
do not ask for a unique x ∈ Tẽ, but only for a unique y ∈ Te which satisfies the
relevant condition in the relevant state a. Thus, assuming that “x is married to y”
is unambiguously determined in each state, we can set

Mary’s husband
render
−−−→ the(ë(x)married(x,Mary)),

and this will give us the correct value in every state, no matter how often Mary gets
married. Moreover,14

Mary’s husband is tall
render
−−−→ tall(man)(Mary′s husband),

and this term automatically gets the right value in every state, including er in a
state in which Mary does not have a unique husband, on the assumption that
tall(er) = er. And “the King of France is bald” will also be assigned er today,
contrary to Russell’s wishes.15

§2.7. Locality and modality. An object

p : (s → ó)→ t̃

is local16 if each value p(x, a) depends only on x(a) and not on any other values
x(b), i.e., if

for all x, x′, a, if x(a) = x′(a), then p(x, a) = p(x′, a),

or, equivalently,

for all x and a, p(x, a) = p(dere(x, a), a).

14The type (ẽ → t̃) → (ẽ → t̃) we have assigned to adjectives requires a noun as the argument of
tall, and for this we must depend on the informal context of Footnote 4; it is assumed here that Mary’s
husband is classified as tall among men and not (for example) among basketball players.
15Cf. the discussion in Moschovakis [1994].
16SeeMontague [1973][Section 4]. Montague and Gallin use extensional and intensional for our local

and modal, but this adds one more use to the already overloaded extension-intension distinction and
suggests a connection between modality and meaning which is not in the spirit of this article.
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An object which is not local is modal. A closed term A : (s → ó) → t̃ is local or
modal accordingly as it denotes a local or modal object.
For example, the negation operation ¬ : (t̃ → t̃) is local, while � : (t̃ → t̃) is
modal, by their definitions above. What seems (at first) surprising is that some
common nouns and verbs are also modal, in this abstract sense, and that the
distinction is worth noting.
If, for example,

The president is running
render
−−−→ runs(the(president)),

then the constant runs : (ẽ → t̃) is most likely local, interpreted by the relation

runs(x, a) ⇐⇒ x(a) is running in state a.

However, in Partee’s classic example

the temperature is rising
render
−−−→ rises(the(temperature)),

if temperature : ẽ → t̃ is a (local) constant defined by

temperature(x)(a) ⇐⇒ the temperature in state a is x(a) degrees,

then rises cannot be reasonably interpreted by a local object: because we cannot tell
whether the temperature is rising in state a from the mere knowledge of its value in
a. We can interpret rises closest to our intuitions (and get the right truth value in
the example) by setting

a{j := t} = the state which differs from a only in that time(a{j := t}) = t,

rises(x, a) ⇐⇒ the function t 7→ x(a{j := t}) is increasing at time(a),

or, more precisely (with a bit of calculus),17

rises(x, a) ⇐⇒
∂x(a{j := t})

∂t
(a) > 0.

This object “rises” is then modal.
For another example, consider the sentence

the color of the sky ranged from light pink to deep, brooding red;

the verb “ranges” is modal in this usage since to determine whether ranges(color, a)
we must evaluate color(b) for various states b which differ in “observed location”
from the current state a—assuming, for the example, that “observed location” is
part of the state.
It is important to distinguish modality—which has to do with the dependence of
p(x, a) on values x(b) for states b 6= a—from the possible dependence of p(x, a)
on properties of x(a) in states b 6= a. To interpret the verb “runs”, for example, we
might use one of the following two plausible interpretations:

runs(x, a) ⇐⇒ x(a) is running in state a,(9)

runs-alt(x, a) ⇐⇒ x is running in state a,(10)

17This assumes that x(a{j := t}) is a real number for t near time(a). If not, then rises(x, a) should
probably be set to er.

December 13, 2004



14 YIANNIS N. MOSCHOVAKIS

where runs-alt(x, a) is defined like rise(x, a), using values of x(a{j := t}) for
various t’s. Suppose that in the current state a,

the(President)(a) = Bush.

With the (more natural, I think) first (local) interpretation, we cannot tell if

runs(the(President), a)(11)

solely from a snapshot of Bush in the current state, as he may just be standing
in a running posture; to assert (11) we need to observe Bush for a small time-
interval around the current time—but we only need to observe Bush, not the person
who might have been “the President” a few minutes before. Thus “runs” is local
(directly from its definition), even though the truth value of runs(x, a) may depend
on properties of x(a) in states b other than a. On the other hand, by its definition
again, the truth value of

runs-alt(the President, a)

depends on who “the President” is in states other than a, and it may be in some
doubt right about inauguration time; this is a modal verb.18

These considerations extend directly to transitive verbs: an object p : ẽ× ẽ → t̃ is
local if each value p(x, y, a) depends only on x(a) and y(a), and there are obvious,
natural notions of “local in the first variable” and “local in the second variable”.

§2.8. Co-indexing; rendering directly into Lëar. Roughly speaking, co-indexing
occurs when the references of one or more indexical expressions in a term are
identified with that of a subterm by the introduction of a bound variable which
refers to all of them. Some examples of co-indexing in the ë-calculus:

John loves himself
formalize
−−−−→ loves(John, himself)
co-index
−−−−→ë

(

ë(j)loves(j, j)
)

(John)(12)

John kissed his wife
formalize
−−−−→ kissed(John,wife(his))
co-index
−−−−→ë

(

ë(j)kissed(j,wife(j))
)

(John)(13)

John loves his wife and he honors her

formalize
−−−−→ loves(John,wife(his))& honors(he, her)

co-index
−−−−→ë ë(j)

[

loves(j,wife(j))& honors(j, her)
]

(John)

co-index
−−−−→ë ë(j)

[

ë(w)
(

loves(j, w)& honors(j, w)
)

(wife(j))
]

(John).(14)

Co-indexing is part of the rendering operation, since whether and how it should
be done is determined by the informal context discussed in Footnote 4. The analysis
of the examples suggests that it may be viewed as a formal operation on terms, which

18The local reading of an intransitive verb F : (ẽ → t̃)→ t̃ can be obtained from the modal version
in the same way that we derived the de-re reading from the de-dicto reading of modal operators in §2.5:

F1(x)(a) = F (dere(x, a))(a).

Which of the two should be used in each case is not a matter of logic but one of language, and so it must
be done at the rendering stage; we choose the modal rendering for rising temperatures and the local one
for running presidents because they give us the desired meanings (and truth values).
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completes the rendering after an initial formalization that leaves the indexicals alone;
symbolically

render
−−−→ =

formalize
−−−−→ +

co-index
−−−−→1 + · · ·+

co-index
−−−−→k .

I will not attempt to define this operation here, since it is not clear at this point
how to do it in full generality. What is worth noticing, however, is that the recursion
construct provides an alternative way to co-indexwhich, in fact,may lead to essentially
new renderings of simple English sentences. For the examples above:

John loves himself
formalize
−−−−→ loves(John, himself)
co-index
−−−−→ar loves(j, j) where {j := John}(15)

John kissed his wife
formalize
−−−−→ kissed(John,wife(his))
co-index
−−−−→ar kissed(j,wife(j)) where {j := John}(16)

John loves his wife and he honors her

formalize
−−−−→ loves(John,wife(his))& honors(he, her)

co-index
−−−−→ar loves(j,wife(j))& honors(j, her) where {j := John}

co-index
−−−−→ar

(

loves(j, w)& honors(j, w) where {w := wife(j)}
)

(17)

where {j := John}

≈ loves(j, w)& honors(j, w) where {w := wife(j), j := John}(18)

It will turn out that, naturally enough, (12) and (15) are referentially synonymous,
but (13) is not referentially synonymous with (16), and neither is (14) referentially
synonymous with (17) or its synonym (18), which we have included for clarity.
Moreover, we will show in §3.25 that the terms in (16), and (17) are not referentially
synonymous with any explicit terms, i.e., their referential intensions can only be
expressed using the recursion construct. It is a matter for investigation, of course,
whether these Lëar terms express “more naturally” (or, more to the point, more
usefully for further processing) the English sentences that they render; we will
return to this point in §3.26.

§2.9. Proper nouns, demonstratives and quantifiers. One of the most original
innovations inMontague [1973] is the interpretation of “John”, “I” and “the blond”
by quantifiers, of type q̃ ≡ (ẽ → t̃) → t̃ (in the present system), so that he gets the
uniform renderings,

John runs
render
−−−→ JohnMont(runs), every man runs

render
−−−→ every(man)(runs).

Here Montague interprets “John” by the evaluation function,

JohnMont(p) = p(John).

In addition to the obvious advantage of assigning similar formal renderings to
similar constructions of natural language, the device also facilitates greatly the
operation of coordination, which we will discuss in §2.10. I will not adopt it,
however, because the Montague renderings produce the wrong logical form for the
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syntactical expressions that they purport to formalize, and thus lose the intended
meaning. Specifically, we will show in §3.27 that the Montague renderings

The evening star is the morning star
render
−−−→ ESMont(ë(u)MSMont(ë(v)(u = v))),

The morning star is the evening star
render
−−−→ MSMont(ë(u)ESMont(ë(v)(u = v)))

of the classic Frege example are not referentially synonymous, as, of course, they
should be.19 The more natural renderings

ES = MS, MS = ES

which come from the typing we have adopted are referentially synonymous.
It is not hard to formulate rules for rendering which avoid unnecessary type-
raising and give plausible results for (at least) simple expressions which involve
singular terms or quantifiers (or both). The basic technique is known as type-driven
rendering (or translation), cf.Klein andSag [1985] or themore recent textbookHeim
and Kratzer [1998][Chapter 3], where it is applied using phrase structure trees to
represent meanings. For example, for English phrases of the form

A φ with A
render
−−−→ A, φ

render
−−−→ φ : ẽ → t̃,

like “John runs” or “every man runs”,

if A : ẽ, set A φ
render
−−−→ φ(A), and if A : q̃, set A φ

render
−−−→ A(φ),

which in the examples gives the correct readings

John runs
render
−−−→ runs(John) and every man runs

render
−−−→ every(man)(runs).

A similar, somewhat more complex rendering rule (with four cases) can be given
for English expressions

A φ B

where φ is a transitive verb, like “John loves every woman” or “every man loves
John’s wife”, although the matter is certainly not that simple for more complex
syntactical expressions.
For our purposes here, the main lesson is that meaning (intuitively understood)
must be seriously considered in the rendering process—simply “getting the right de-
notation” is not enough; and that the subsequent, formal computation of referential
intensions and synonymies provides some clues as to whether the informal meaning
was captured by the proposed rendering.

§2.10. Coordination. “John andMary entered the room” does not have quite the
same meaning as “John entered the room and Mary entered the room”, because
(for one thing) they do not have the same logical form: the first is a predication,
while the second is a conjunction.20 Similarly, “The temperature is 90◦ and rising”
(a predication) is not synonymous with “The temperature is 90◦ and it is rising”,

19I am assuming here (and in the sequel) that “The evening star is the morning star” is an identity
statement, as Frege understood it, and so intuitively synonymous with its converse. Those who read
Frege differently or do not agree with him on this, may want to use the example

one plus five equals two times three

whose status as an identity statement is hard to deny and with which the same point can be made.
20Cf. Ouhalla [1994][Section 2.8].
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which is a conjunction. To capture these distinctions we must coordinate “John”
and “Mary”, put them together into a single object—which, however, cannot now
be a singular object of type ẽ, but must be a quantifier; and (what seems easier), we
must combine “is 90◦” and “rising” into a single relation. The abstraction construct
is a powerful tool for defining these coordination operations in combination with
type-driven rendering, and it is well understood how they can be expressed in the
ë-calculus. In the spirit of the preceding two paragraphs, however, it may be worth
listing here some alternative renderings directly into Lëar, which use the recursion
construct and (in some cases) produce substantially simpler meanings.21

(A) If Xi
render
−−−→ X i : ẽ, set

X1 and X2
render
−−−→ ë(r)(r(x1)& r(x2)) where {x1 := X 1, x2 := X 2}.

Thus

John and Mary
render
−−−→ ë(r)(r(x1)& r(x2)) where {x1 := John, x2 := Mary} : q̃.

(B) If X
render
−−−→ X : ẽ and Q

render
−−−→ Q : q̃, set

X and Q
render
−−−→ ë(r)(r(x)& q(r)) where {x := X, q := Q} : q̃,

so that

the teacher and every student

render
−−−→ ë(r)(r(x)& q(r)) where {x := the(teacher), q := every(student)}.

(C) If Qi
render
−−−→ Qi : q̃, set

Q1 and Q2
render
−−−→ ë(r)(q1(r)& q2(r)) where {q1 := Q1, q2 := Q2} : q̃,

so that

some boy and every girl

render
−−−→ ë(r)(b(r)& g(r)) where {b := some(boy), g := every(girl)}.

(D) If Pi
render
−−−→ Pi : ẽ → t̃, set

P1 and P2
render
−−−→ ë(i)(p1(i)&p2(i)) where {p1 := P1, p2 := P2} : ẽ → t̃,

so that (adding an application to get the Partee example)

The temperature is 90◦ and rising

render
−−−→

(

ë(t)(n(t)& r(t))where {n := ë(x)[x = 90◦], r = rises}
)

(the(temperature)).

21Like co-indexing, coordination should be defined as a formal operation on terms to be performed
after an initial formalization; whether it should come before or after co-indexing (or whether that
matters) is a matter for investigation. The examples here do not cover the most general case, which is
quite complex; see also §3.18.
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§3. Referential intensions and referential synonymy. The technical work in this,
the main section of the paper, will proceed in three parts, as follows.

I. Reduction, irreducibility, canonical forms (§3.5–§3.15 ). We will define a binary
relation⇒ of reduction between terms, so that, intuitively,

A⇒ B ⇐⇒ A ≡c B (A is congruent with B)

or A and B have the same meaning

and B expresses that meaning “more simply”.

The disjunction is needed because some terms will not be assigned meanings, but
the reduction calculus will still apply to them. We set

A is irreducible ⇐⇒ for all B , if A⇒ B , then A ≡c B.(19)

Irreducible terms which have meaning, express their meaning “as simply as possi-
ble”.
We will then outline a proof of the following, simple but basic result of the paper:

§3.1. Canonical Form Theorem. For each term A, there is an irreducible term

cf(A) ≡ A or cf(A) ≡ A0 where {p1 := A1, . . . , pn := An}

such that A ⇒ cf(A); moreover, cf(A) is the unique (up to congruence) irreducible
term to which A can be reduced, i.e.,

if A⇒ B and B is irreducible, then B ≡c cf(A).

We call cf(A) the canonical form of A and we write

A⇒cf B ⇐⇒ cf(A) ≡c B.

The termsA0, A1, . . . , An are the parts ofA, andA0 is its head. It will be convenient
to employ the notational convention

A where { } ≡ A

introduced in (4), which allows us to assume that all canonical forms look like
recursive terms—perhaps with an empty body:

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0).

The definition of reduction is by ten, simple reduction rules, and the computation
of canonical forms is effective.

§3.2. Logical form and syntactic synonymy. The canonical form of a term A
expresses the meaning of A directly in terms of the primitives of the language and
the vocabulary, and it gives a plausible explication of the logical form of the natural
language phrase rendered by A—if A renders a phrase. Two terms A and B are
syntactically synonymous if their canonical forms are congruent, in symbols

A ≈s B ⇐⇒ cf(A) ≡c cf(B).(20)

This stands for synonymy on the basis of logical form alone. We will establish
several natural properties of syntactic synonymy.
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II. Referential intensions (§3.16–§3.20). Variables and some very simple, immedi-
ate terms have nomeaning, they denote immediately. Constants, on the other hand,
denote directly, but they havemeanings (albeit trivial ones), and they contribute dif-
ferently to the meanings of the terms in which they occur. The distinction between
immediate and direct reference is a central feature of this theory and we will discuss
it in §3.7, where immediate terms are defined, and in Section 4, especially §4.8.
If A is proper (i.e., not immediate) and

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0),

then the referential intension int(A) ofA is (intuitively) the abstract algorithmwhich
computes for each assignment g the denotation den(A)(g), as that was described
in Case (D4) of §1.4 and the example following it. The precise definition is given
in §3.16.
The parts A0, A1, . . . , An of a term A are explicit, irreducible terms, whose mean-
ings (if they exist) are exhausted by their denotations; and the assignments of
denotations to these terms may be regarded as the relevant, basic facts needed for
the determination of the denotation ofA. The referential intension int(A) “codifies”
in a mathematical object these facts and the natural process by which den(A)(g) is
computed from them.

§3.3. Canonical forms and truth conditions. If A is a Carnap intension, then its
canonical form may also be viewed as a generalized (or just precise) version of
Davidson’s set of truth conditions for A, whose relation to meaning is described as
follows in Davidson [1967]:

. . . the obvious connection between a definition of truth of the kind
Tarski has shown how to construct, and the concept of meaning . . . is
this: the definition works by giving necessary and sufficient conditions
for the truth of every sentence, and to give truth conditions is a way of
giving the meaning of a sentence.

Davidson does not take the next step, which is to extract a semantic object from
these truth conditions and call it “the meaning of A”, and, in fact, he denies that
this step is useful or even possible. Despite this important difference, it is quite clear
that the approach to language in this paper is very close to Davidson’s, and can
even be viewed as incorporating Davidson’s basic insights into a “Fregean theory
of meaning” (with meanings!) whose possibility Davidson doubts.

III. Referential synonymy (§3.4–§3.27). Twoproper terms are referentially synony-
mous if their referential intensions are naturally isomorphic, so that theymodel—they
are, from the mathematical point of view—identical algorithms. It is also conve-
nient to call two immediate termsX andY referentially synonymous if they have the
same denotation for all assignments to the variables. We have already introduced
in (7) the notation

A ≈ B ⇐⇒ A and B are referentially synonymous.

The precise, general definition of natural isomorphism in §3.20 is a bit technical,
but it implies a very simple characterization of the referential synonymy relation on
terms:
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(cong) If A ≡c B , then A⇒ B

(trans) If A⇒ B and B ⇒ C , then A⇒ C

(rep1) If A⇒ A′ and B ⇒ B ′, then A(B)⇒ A′(B ′)

(rep2) If A⇒ B , then ë(u)(A)⇒ ë(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {p1 := A1, . . . , pn := An} ⇒ B0 where {p1 := B1, . . . , pn := Bn}

Table 4. The reduction calculus: congruence, transitivity, compositionality.

§3.4. Referential Synonymy Theorem. Two terms A,B are referentially synony-
mous if and only if

A⇒cf A0 where {p1 := A1, . . . , pn := An},

B ⇒cf B0 where {p1 := B1, . . . , pn := Bn},

for some n ≥ 0 and suitable, A0, A1, . . . , An, B0, B1, . . . , Bn, so that

|= Ai = Bi (i = 0, 1, . . . , n).

In particular,

A⇒ B =⇒A ≈s B =⇒A ≈ B.

The result reduces referential synonymy to a system of (effectively determined)
denotational identities between explicit, irreducible terms, and it is at the heart of
the proposed theory of meaning. Notice that n = 0 is allowed in this theorem (by
the convention (4)) and occurs when A and B are explicit, irreducible terms: such
terms are synonymous exactly when they have the same denotation.
Referential synonymydiffers from syntactic synonymy in that it takes into account
the intended interpretation of the constants and the constructs of Lëar(K); if, for
example, den(a) = den(b) for two distinct constants, then a ≈ b but a 6≈s b, and if
wife is a constant, then wife ≈ ë(x)wife(x) but wife 6≈s ë(x)wife(x).22

We now turn to the technical development of parts I – III.

§3.5. The reduction calculus: congruence, transitivity, compositionality. The first
five rules of the Reduction Calculus are listed in Table 4, and they simply insure
that the reduction relation is transitive and compositional, and that it extends the
congruence relation. They do not produce by themselves any non-trivial reductions.

§3.6. The reduction rules for recursion. These are listed in Table 5, and they allow
us to combine recursive definitions. In stating them I have used the abbreviations

~p := ~A for p1 := A1, . . . , pn = An,

~q := ~B for q1 := B1, . . . , qm = Bm,

22There is also an intermediate notion ≈` of logical synonymy which takes into account the meaning
of the constructs of Lëar(K) but not that of the constants, so that (with the same assumptions) a 6≈` b

but wife ≈` ë(x)wife(x).
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(

A0 where {~p := ~A}
)

where {~q := ~B} ⇒ A0 where {~p := ~A,~q := ~B}(head)

(B-S) A0 where {p :=
(

B0 where {~q := ~B}
)

, ~p := ~A}

⇒ A0 where {p := B0, ~q := ~B, ~p := ~A}
(

A0 where {~p := ~A}
)

(B)⇒ A0(B) where {~p := ~A}(recap)

Table 5. The reduction calculus: rules for recursion.

where it is assumed that p1, . . . , pn, q1, . . . qm are distinct locations, and I have
omitted some (mostly obvious) restrictions on occurrences of variables. Here they
are in full, with some examples.
The head-rule (head). Restriction: No pi occurs free in any Bj .

23 Thus:
(

loves(j, w) where {w := wife(p), p := Paul}
)

where {j := John}

⇒ loves(j, w) where {w := wife(p), p := Paul, j := John}.

The Bekič-Scott rule (B-S). Restriction: No qj occurs free in any Ai . Example:

loves(j, w) where {w :=
(

wife(p) where {p := Paul}
)

, j := John}

⇒ loves(j, w) where {w := wife(p), p := Paul, j := John}.

The examples have been silly because the rules we have introduced so far don’t
do much reducing: basically they say that nested occurrences of “where” can be
“flattened out”, which is an obvious move. The next rule is not so innocuous.

The recursion-application rule (recap). Restriction: No pi occurs free in B . For
an example, let24

A ≡ (h = s) where {h := He, s := Scott},

a term which is synonymous with

He is Scott,

as we will see after the next group of reductions. The term A is a closed Carnap
intension which is true in a state a exactly when

He(a) = Scott(a).

By the recap rule, for any state variable x,

A(x)⇒ B ≡ (h = s)(x) where {h := He, s := Scott},

23The restriction implies, in particular, that the recursive term on the right is acyclic, if the given
terms are. This must be formally checked for each of the rules, but it is quite simple in all cases and I
will not bring it up again.
24As everybody knows, “Scott” is a rigid constant which denotes Sir Walter Scott in every state.
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and it is clear that den(A(x))(g) = den(B)(g) for every assignment g, but: notice
that x occurs only in the head (h = s)(x) of B . To compute the denotation ofA(x)
by the recipe suggested by the form of B , we follow the following

Procedure 1.
Stage 1: Set h := He, s := Scott.
Stage 2: Set a := g(x); if h(a) = s(a) = Sir Walter, give the value 1, otherwise
give the value 0.
Some people might compute den(A(x))(g) by the following, somewhat different
procedure

Procedure 1′.
Stage 1′. Set a := g(x).
Stage 2′: h′ := He(a), s ′ := Scott(a) = Sir Walter.
Stage 3′: If h′ = s ′ = Sir Walter, give the value 1, otherwise give the value 0.

Not much difference between the two, perhaps, but those who use Procedure 1′

never encounter the “full” functions “He” and “ Scott”, only their values in the
particular state a. Put another way, in terms of meanings: the (full) meaning of
“He” and that of “Scott” are parts of the meaning of B (and hence of A(x)) for the
notion of meaning that will be determined by this reduction relation.

Only two more rules remain, but they are the ones which do most of the work.
The first of these depends for its formulation on the notion of immediacy and—for
the first time—differentiates between pure and recursion variables!

§3.7. Immediate terms. Variables (of either kind) are immediate, and so are
“generalized variables” of the following forms

X :≡ vi | p | p(v1, . . . , vn) | ë(u1, . . . , um)p | ë(u1, . . . , um)(p(v1, . . . , vn))

(p a location, vi , uj pure)

The key point is that if p is a location of function type and u, v are pure variables,
thenp(v) is immediate while u(v) is not. Termswhich are not immediate are proper.
In computational terms, we can think of a location p : (ó → ô) of function type
as having its entire graph (table, course of values) stored “in the machine”, as soon
as it is specified by an assignment, and then any value p(v) of it is simply read, as is
any value of ë(u, v)p(u, z, w); a pure variable u : (ó → ô) is represented by a port,
and to access a value u(v) we must make a call to that port, which then provides
the required value u(v).
Constants are proper, in any type; to understand this don’t think of “Scott”
(whose “computation” appears to be trivial), think of “ð” which calls for the non-
trivial recomputation of the number ð each time it is encountered. It is standard
advice to beginning programmers to set up an assignment p := ð and then replace
“ð” by “p” throughout their program, if “ð” occurs many times. The new program
expresses a more efficient algorithm, which computes ð only once, stores the value,
and then just reads it each time it is needed.

§3.8. The application rule (ap). This is stated in Table 6. To understand why the
non-immediacy restriction is needed, consider the example

John runs
render
−−−→ runs(John)⇒ runs(j) where {j := John}.
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A(B)⇒ A(b) where {b := B} (B proper, b fresh)(ap)

Table 6. The reduction calculus: the application rule.

If the unrestricted rule preserved meanings, we would have

runs(j)⇒ runs(j ′) where {j ′ := j} (Caution: this is false!)

and then we could continue with the reductions

runs(John)⇒ runs(j) where {j := John}

⇒
(

runs(j ′) where {j ′ := j}
)

where {j := John} (rep3)

⇒ runs(j ′) where {j ′ := j, j := John}, (head)

so that, in particular,

runs(j) where {j := John} ≈ runs(j ′) where {j ′ := j, j := John}.

But this is surely not right, at least if we allow for some computational aspect in the
notion of meaning: because it takes three steps to compute the right-hand-side (as
we have been doing these computations), while two suffice for the left. Moreover, if
we did this several times, we would get arbitrarily long terms of the form

runs(j1) where {j1 := j2, j2 := j3, . . . , jn := jn+1, jn+1 := John},

all of them allegedly synonymous with “John runs”, which does not look right.
Finally, the application rule is consistent with our intuitions about synonymyonly
because of our disallowing the interpretation of the constants of Lëar by propositional
attitudes, like knowledge or belief. If reduction implies synonymy and we had a
constant I know in Lëar, then it cannot be that for any closed term A : t,

I know that A
render
−−−→ I know(A)⇒ I know(p) where {p := A};

because p : t in this term, which means that the constant I know denotes a function
K : Tt → Tt such thatK(1) = 1, since “I know that 1+1 = 2”; and hence “I know
that A” for every true proposition A, which is absurd.25

§3.9. The canonical form of “John loves Mary”. The last (still missing) reduction
rule does not affect ë-free terms, and so runs(j) where {j := John} is irreducible,
since (by a simple inspection) none of the nine rules we have listed so far other than
(cong) can be applied to it. This means that the single application

runs(John)⇒cf runs(j) where {j := John}

of the (ap) rule gives us the canonical form of tall(John). Let’s write out one more
complete reduction to canonical form which is just as trivial but illustrates the use
of the recursion rules:

John loves Mary
render
−−−→ loves(John,Mary) ≡ loves(John)(Mary)

25The theoryof referential intensions has some implications for themeaning of propositional attitudes,
but they are not in this paper, except for the brief remark in §4.9.
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(ë-rule) ë(u)
(

A0 where {p1 := A1, . . . , pn := An}
)

⇒ ë(u)A′

0 where {p′1 := ë(u)A
′

1, . . . , p
′

n := ë(u)A
′

n}

where for i = 1, . . . , m, p′i is a fresh location and A
′

i is defined by the replacement

A′

i :≡ Ai{p1 :≡ p
′

1(u), . . . , pn :≡ p
′

n(u)}.

Table 7. The ë-rule.

loves(John)⇒cf loves(j) where {j := John} (ap)

loves(John)(Mary)⇒
(

loves(j) where {j := John}
)

(Mary) (rep1)

⇒ loves(j)(Mary) where {j := John} (recap)

⇒
(

loves(j)(m) where {m := Mary}
)

where {j := John} (ap,rep3)

⇒cf loves(j,m)

where {j := John, m := Mary} (head,cong)

In the same way, we can compute

He is Scott⇒cf (h = s) where {h := He, s := Scott},(21)

and assuming (for simplicity) that the language has constants for addition, multi-
plication and for the first few numbers,

(22) 1 + 5 = 2× 3

⇒cf (a = b) where {a := o + f, o := 1, f := 5, b := t × r, t := 2, r := 3}.

§3.10. The ë-rule. To motivate the ë-rule in Table 7, consider the Carnap inten-
sion

every man danced with his (own) wife

render
−−−→ A ≡ every(man)

(

ë(u)danced(u,wife(u))
)

The crucial part is the ë-term to which the quantifier (every)(man) is applied, and
for that we first reduce the matrix:

B ≡ danced(u,wife(u))⇒cf danced(u,w) where {w := wife(u)}.

The standard computation of the value of B requires us to set

w := wife(u)

for any u, so what is really being computed is the function w ′(u) = wife(u)—which
is, in fact, what we need for the subsequent application of the quantifier; and the
simplest way to effect this is to set

ë(u)(B)⇒ ë(u)danced(u,w ′(u)) where {w ′ := ë(u)wife(u)}.
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The reduction calculus does not justify the next step we would like to take,

ë(u)wife(u)⇒ wife,

but we will see later that

ë(u)wife(u) ≈ wife,

if “wife” is a constant; if, however, it is an abbreviation introduced by

wife(u) ≡ the(ë(v)married(u, v)),

then we can use the ë-rule again to compute

ë(u)the(ë(v)married(u, v))⇒ ë(u)[the(w) where {w := ë(v)married(u, v)}]

⇒ ë(u)the(w(u)) where {w := ë(u)ë(v)married(u, v)},

and if now “married” is a constant, we have

ë(u)ë(v)married(u, v) ≈ married,

so that at the level of synonymy we get

ë(u)(B)⇒ ë(u)danced(u,w ′(u)) where {w ′ := ë(u)wife(u)}

≈ ë(u)danced(u,w ′(u)) where {w ′ := ë(u)the(w(u)), w := married}.

This completes the definition of the reduction relation. We claim that it preserves
meaning, so it had better preserve at least denotations:

§3.11. Theorem. If A⇒ B , then |= A = B .

Proof is simple, by induction on the definition of the reduction relation. a

It is also easy to read off the reduction rules a simple characterization of irre-
ducible terms, defined in (19):

§3.12. Theorem. (a) Constants and immediate terms are irreducible.
(b) An application term A(B) is irreducible if and only if B is immediate and A is
explicit and irreducible.
(c) A ë-term ë(u)(A) is irreducible if and only if A is explicit and irreducible.
(d) A recursive term A0 where {p1 := A1, . . . , pn := An} is irreducible if and only
all the parts A0, . . . , An are explicit and irreducible.
The proof is simple, by inspection of the reduction rules.

§3.13. Canonical forms. We define the canonical form cf(A) of each term A by
the following recursion on terms, assuming in each of the clauses that all bound
locations are distinct and distinct from all the free locations. (This can be insured
by making suitable alphabetic changes on the bound variables of the given terms
before we apply each clause, if needed.)

(CF1) cf(c) :≡ c (≡ c where { }); cf(x) :≡ x (≡ x where { }).

(CF2) Suppose cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0). If X is
immediate, then

cf(A(X )) :≡ A0(X ) where {p1 := A1, . . . , pn := An};
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and if B is proper and cf(B) ≡ B0 where {q1 := B1, . . . , qn := Bm}, then

cf(A(B)) :≡ A0(q0) where {p1 := A1, . . . , pn := An,

q0 := B0, q1 := B1, . . . , qm := Bm}.

(CF3) For any pure variable u, if

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0),

then,

cf(ë(u)A) :≡ ë(u)A′

0 where {p′1 := ë(u)A
′

1, . . . , p
′

n := ë(u)A
′

n},

where (as in the ë-rule for reduction) each p′i is a fresh location and

A′

i ≡ Ai{p1 :≡ p
′

1(u), . . . , pn :≡ p
′

n(u)}.

(CF4) If A ≡ A0 where {p1 := A1, . . . , pn := An} with n ≥ 0 and if, for
i = 0, . . . , n,

cf(Ai) ≡ Ai,0 where {pi,1 := Ai,1, . . . , pi,ki := Ai,ki} (ki ≥ 0),

then

cf(A) :≡ A0,0 where { p0,1 := A0,1, . . . , p0,k0 := A0,k0 ,

p1 := A1,0, p1,1 := A1,1, . . . , p1,k1 := A1,k1 ,

...

pn := An,0, pn,1 := An,1, . . . , pn,kn := An,kn}.

In the next result we summarize the basic properties of canonical forms which,
in particular, provide a proof of the Canonical Form Theorem §3.1.

§3.14. Theorem. For every term A:
(1) The canonical form of A is a term

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0)

with explicit, irreducible parts A0, A1, . . . , An, so that it is irreducible. A constant c
or a variable x occurs ( free) in cf(A) if and only if it occurs ( free) in A.
(2) A⇒ cf(A).
(3) If A is irreducible, then cf(A) ≡ A.
(4) If A⇒ B , then cf(A) ≡c cf(B).
(5) If A⇒ B and B is irreducible, then B ≡c cf(A).

Outline of proof. (1) is verified easily, by inspection of the reduction rules, and
(2) is also very simple, by induction on the termA. (3) is verified by an induction on
the characterization of explicit, irreducible terms given in Theorem §3.12. It applies
to immediate terms, which are explicit and irreducible. The crucial (4) is proved by
induction on the definition of the reduction relation, and it involves (unfortunately)
a great deal of computation. Finally, for (5), if B is irreducible, then B ≡ cf(B), by
(3); and so if A⇒ B , then cf(A) ≡c cf(B) ≡ B by (4). a

Next we summarize some of the basic properties of syntactic synonymy, defined
in (20).
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§3.15. Theorem. (1) If A ⇒ D and B ⇒ D for some D, then A ≈s B ; and,
similarly, if D ⇒ A and D ⇒ B for some D, then A ≈s B .
(2) If A ≈s X for some immediate term X , then A is also immediate and A ≡c X .
(3) ≈s is an equivalence relation on terms which extends congruence and respects
application, ë-abstraction and the formation of recursive terms, i.e.,

A1 ≈s B1 A2 ≈s B2

A1(A2) ≈s B1(B2)

A ≈s B

ë(u)A ≈s ë(u)B

A0 ≈s B0, A1 ≈s B1, . . . , An ≈s Bn

A0 where {p1 := A1, . . . pn := An} ≈s B0 where {p1 := B1, . . . , pn := Bn}

(4) If z : ó is a constant c, or a variable of either kind, C : ó is a proper term of
the same type and the substitution {z :≡ C} is free in A, then

A{z :≡ C} ≈s

(

cf(A)
)

{z :≡ C}.

These facts are also established by somewhat messy, long computations.

§3.16. Referential intensions. Let G be the set of all assignments to the variables,
suppose that A is a proper (non-immediate) term with canonical form

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0),

and for i = 0, . . . , n set

αi(g, d1, . . . , dn) = den(Ai)(g{p1 := d1, . . . , pn := dn}).

The referential intension of A is the tuple of functions

int(A) = (α0, α1, . . . , αn).

For example, by §3.9, int(loves(John,Mary)) = (α0, α1, α2), where

α0(g, j,m) = loves(j,m),

α1(g, j,m) = John,

α2(g, j,m) = Mary.

Notice that if A,A0 : ó and Ai : ói , then

α0 : G× Tó1 × · · · × Tón → Tó ,(23)

and for i = 1, . . . , n, αi : G× Tó1 × · · · × Tón → Tói .(24)

Moreover, because of the acyclicity of cf(A), each αi satisfies the following condi-
tion, for all g, d1, . . . , dn, d

′

1, . . . , d
′

n, with rank(j) = rank(pj):

(25) if dj = d
′

j for all j such that rank(j) < rank(i),

then αi(g, d1, . . . , dn) = αi(g, d
′

1, . . . , d
′

n).

§3.17. Acyclic recursors. A tuple of functions (α0, α1, . . . , αn) which satisfies
conditions (23)–(25) with some

rank : {1, . . . , n} → {1, . . . , n}
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is called an acyclic recursor onG toTó , with internal type ó1×· · ·×ón and dimension
n ≥ 0. We write

α = (α0, α1, . . . , αn) : G Tó(26)

to indicate its domain of definition and range of values. The names are justified,
because α determines (or computes) a function

α : G→ Tó

as follows:

α(g) = α0(g, d 1, . . . , d n),

where, for each g, d 1, . . . , d n are the unique solutions of the system of equations

di = αi(g, d1, . . . , dn) (i = 1, . . . , n),

guaranteed by the acyclicity condition. A recursorα = (α0) of dimension 0 is called
trivial, as it is completely determined by the function α = α0 : G→ Tó .
Thus the referential intensionof a non-immediate termA : ó is an acyclic recursor

int(A) : G Tó ,

and by clause (D4) of the definition of denotations §1.4 and Theorem §3.11, for
every assignment g,

int(A)(g) = den(A)(g),

i.e., the referential intension of A computes its denotation.

§3.18. Circuit diagrams. The canonical form of a proper termA and the recursor
that it determines can be visualized as a labeled directed graph, a circuit really, with
nodes the recursion variables p1, . . . , pn of cf(A); the part Ai labeling the node pi ;
and an arrow put from pi to pj if pj occurs in Ai . Figure 1 pictures this circuit for

A ≡ John loves Mary and she loves him and every boy,

a reasonably complex sentence whose rendering involves both co-indexing and
coordination.26

§3.19. Algorithms and meanings as recursors. The introduction promised to
model the meaning of a term A by an “abstract, idealized algorithm”, but what
has been delivered is an “acyclic recursor” int(A) = (α0, α1, . . . , αn), a tuple of
functions. It is not evident why—and in what sense—algorithms can be “faithfully
represented” by recursors. This is discussed in Moschovakis [1998], and we will
review some of these arguments in the last Section 5, where we will also examine
why—and in what sense—meanings can be faithfully represented by algorithms,
and exactly what kind of algorithms. Here we record only that we have constructed
a precise model of the basic picture of a Fregean theory of meaning,

A 7→ int(A) 7→ den(A),

26The construction of this normal form assumes a coordination operation on formal terms which is
executed after all co-indexing operations and which distinguishes immediate from proper arguments, so
that

j & every(boy)
coord
−−−→ ë(r)(r(j)& q(r)) where {q := every(boy)}.
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R

ë(r)r(j)
9

+

a

boy

every(b)

mJohn bMaryj
?

q

?

l ë(v)loves(m, v)

/

^

P loves(j,m) Q ë(r)[a(r)& q(r)](l)

+

Head P&Q

= s

A⇒cf P&Q where {P := loves(j,m), Q := ë(r)[a(r)& q(r)](l), a := ë(r)r(j)

l := ë(v)loves(m, v), q := every(b), b := boy, j := John, m := Mary}

Figure 1. John loves Mary and she loves him and every boy.

with int(A) an object which purports to model the meaning of A.

§3.20. Natural recursor isomorphism. An acyclic recursor (26) determines for
each assignment g the system of mutual recursive equations











d1 = α1(g, d1, . . . , dn)
...

dn = αn(g, d1, . . . , dn)

(27)

whose unique solutions (along with the head α0) determine the value α(g) as above.
The order in which the equations are listed in (27) is of no consequence in this
process of evaluation, and so it is natural to “identify” two recursors if they only
differ in this respect. The precise definition is a bit technical:
Two acyclic recursors

α = (α0, α1, . . . , αn), â = (â0, â1, . . . , âm) : G Tó

of respective internal types ó1×· · ·×ón and ô1×· · ·× ôm and into the same output
set Tó are naturally isomorphic,

27 if they have the same dimension (m = n), and

27Natural isomorphism is the strictest equivalence relation among recursors which accords with our
view of them as “the semantic content” of systems of recursive equations, with a head; the least-strict
one is equality of denotations,

α ∼ â ⇐⇒ (∀g)[α(g) = â(g)].

In-between these two extremes, there are many interesting and useful ways to identify recursors, de-
pending on what particular kind of “process” we are trying to model. I will confine myself here to
natural isomorphism which captures the strictest notion of synonymy, but there are competing “identity
conditions” for meanings which may prove useful upon further study.
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A ≈s B

A ≈ B

A ≈ A
A ≈ B
B ≈ A

A ≈ B B ≈ C
A ≈ C

A1 ≈ B1 A2 ≈ B2

A1(A2) ≈ B1(B2)
A ≈ B

ë(u)A ≈ ë(u)B

A0 ≈ B0, A1 ≈ B1, . . . , An ≈ Bn

A0 where {p1 := A1, . . . pn := An} ≈ B0 where {p1 := B1, . . . , pn := Bn}

|= C = D
(∗)

C ≈ D
hence:

(C e.i.)
(

ë(u)C
)

(v) ≈ C{u :≡ v}

e.i. : (congruent to) explicit, irreducible
(∗) : C,D are both e.i., immediate or proper terms
|= C = D ⇐⇒ for all assignments g, den(C )(g) = den(D)(g)
u and v are pure variables, and the substitution C{u :≡ v} is free

Table 8. The calculus of referential synonymy.

there is a permutation

ð : {0, 1, . . . , n}�→ {0, 1, . . . , n} with ð(0) = 0,

such that óð(i) = ôi for i = 1, . . . , n and

αð(i)(g, d1, . . . , dn) = âi(g, dð(1), . . . , dð(n)) (g ∈ G, di ∈ Tói , i = 0, . . . , n).

We set

α ∼= â ⇐⇒ α and â are naturally isomorphic.

§3.21. Referential synonymy. Two proper terms are referentially synonymous if
they have naturally isomorphic referential intensions, and two immediate terms are
referentially synonymous if they have the same denotations. In symbols:

A ≈ B ⇐⇒ A,B are immediate and |= A = B,

or A and B are proper and int(A) ∼= int(B).

The Referential Synonymy Theorem §3.4 follows immediately from this defini-
tion, and it is much easier to understand and apply than chasing natural isomor-
phisms. For the purposes of this paper, it might as well be taken as the definition
of referential synonymy.
Together with the rules for reduction, the Referential SynonymyTheorem implies
easily the rules for referential synonymy in Table 8. Notice the last rule, which is
a very weak form of â-reduction—and just about the only form of â-reduction
which is valid for referential synonymy. For a simple counterexample to a minimal,
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plausible strengthening, let’s appeal once more to John’s self-love. Easily from the
rules:

John loves himself
render
−−−→

(

ë(x)loves(x, x)
)

(John)

⇒cf
(

ë(x)loves(x, x)
)

(j) where {j := John},

John loves John
render
−−−→ loves(John, John)

⇒cf loves(j1, j2) where {j1 := John, j2 := John},

and so28
(

ë(x)loves(x, x)
)

(John) 6≈ loves(John, John),

since (for one thing) their referential intensions have different dimensions.

From the conceptual point of view, it might be better to define referential syn-
onymy only between proper terms, since the words suggest “same meaning” and
immediate terms are not assigned meanings. The rules in Table 8 are simpler and
easier to use, however, when we have the relation defined between pairs of arbitrary
terms, for example in the proof of the

§3.22. Compositionality Theorem. For all terms A,B,C and every variable x such
that type(x) = type(B) = type(C ),

if B ≈ C, then A{x :≡ B} ≈ A{x :≡ C},

assuming that the substitutions are free.

Proof is by induction on the term A, applying the rules in Table 8. a

§3.23. Why not assign meanings to immediate terms? Especially since they have
canonical forms, which define (trivial) acyclic recursors, and so there is an obvious
candidate for the object int(x).
Suppose our structure has a constant id : e → e for the identify function on the
set of entities,

id(x) = x (x ∈ Te),

so that id(x) and x are both irreducible and denotationally equivalent, and they
would be synonymous under anyplausible assignment ofmeaning to variableswhich
is consistent with the referential intensions approach; but then compositionality
would fail, since

f(id(x))⇒cf f(p) where {p := id(x)}, f(x)⇒cf f(x) where { },

and so f(id(x)) 6≈ f(x). In this calculus of referential intensions, variables (and the
more general, immediate terms) behave a little like 0 in the arithmetic of fractions:

28In fact we cannot strengthen the rule to allow a location q in place of the pure variable u, because,
with a constant f,

(

ë(v)f(p(v))

)

(q) 6≈ f(p(q))⇒cf f(r) where {r := p(q)},

since the term

(

ë(v)f(p(v))

)

(q) on the left is irreducible. (Incidentally, the example suggests that

explicit, irreducible terms can be quite complex.)
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it is simply not possible to assign any conventional (trivial) value to
1

0
and still have

the usual rules of arithmetic hold.

The Reduction and Synonymy Calculi are very effective tools for establishing
simple synonymies; for example,

(A = B) ≈ (B = A) (type(A) = type(B)),

since

A = B ⇒ a = b where {a := A, b := B}

≡c a = b where {b := B, a := A}

≈ b = a where {b := B, a := A}

≈ B = A,

where the crucial, second step is valid because

|= a = b ⇐⇒ b = a.

Proofs of non-synonymy are not so simple when complex terms are involved,
because it is tedious to compute canonical forms. We showfirst that acyclic recursion
produces more meanings than can be expressed in the typed ë-calculus.

§3.24. Theorem. (1) No location occurs in more than one part of an explicit term.
(2) Suppose a location p occurs in two parts Ak and Al of a term A, and neither Ak
nor Al denotes a function which is independent of p, i.e., for some assignment to the
variables g and objects r, r ′,

den(Ak)(g{p := r}) 6= den(Ak)(g{p := r
′}),

and similarly with Al . It follows that A is not referentially synonymous with any
explicit term.

Proof. (1) is very easy, by induction on the definition of explicit terms and using
the rules (CF1)–(CF4) in the construction of canonical forms §3.13. For example,
looking at (CF4), the only way in which some p′i can occur in A

′

k and also in A
′

l ,
with k 6= l , is if pi occurred in both Ak and Al , which is ruled out by the induction
hypothesis.
For (2), assume the hypothesis and (towards a contradiction) that A ≈ B with
an explicit B , so that

A⇒cf A0 where {p1 := A1, . . . , pn := An},

B ⇒cf B0 where {p1 := B1, . . . , pn := Bn},

with the denotations matching, and in particular, for all g,

den(Ak)(g) = den(Bk)(g), den(Al )(g) = den(Bl )(g).

By the hypothesis then, there is a g and r, r ′ such that

den(Bk)(g{p := r}) 6= den(Bk)(g{p := r
′}),

and this is not possible unless p occurs in Bk ; and by the same argument, p must
also occur in Bl , which contradicts (1). a
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§3.25. Corollary. The terms in (16) and (17) are not referentially synonymous with
explicit terms.

Proof. If wife is a constant, then the canonical form of (16) is

kissed(j, w) where {w := wife(j), j := John},

and the canonical form of (17) is (18); the location j occurs in at least two of the
parts of each of these canonical forms, and so Theorem §3.24 applies. If wife is a
closed term, e.g.,

wife ≡ ë(u)
(

the(ë(v)married(u, v))
)

,

then j will occur in the subsequent reduction of wife(j) to canonical form, and we
can again apply the theorem. a

§3.26. Co-indexing, coordination and logical form. It can be argued that the “new
meanings” of Lëar(K) which cannot be expressed by explicit terms are not mere
curiosities. Consider the following two, related sentences, assuming for simplicity
that stumbled and fell are constants:

John stumbled and he fell (co-indexing)(28)

John stumbled and fell (coordination)(29)

Their rendering requires co-indexing and coordination as indicated, and if we
perform these operations using abstraction in the most natural way (as in §2.8
and §2.10), we get exactly the same formal term:

John stumbled and he fell
render
−−−→ë ë(x)

(

stumbled(x)& fell(x)
)

(John)

John stumbled and fell
render
−−−→ë ë(x)

(

stumbled(x)& fell(x)
)

(John)

This is surely wrong, as it implies that the two sentences (28) and (29) have the
same logical form, which evidently they do not: (28) is a conjunction, while (29)
is a predication. If we do the co-indexing and the coordination using the recursion
construct (following §2.8 and §2.10 again), we get instead

John stumbled and he fell
render
−−−→ar stumbled(j)& fell(j) where {j := John},(30)

(31) John stumbled and fell

render
−−−→ar

(

ë(x)(s(x)&f(x)) where {s := stumbled, f := fell}
)

(John)

⇒cf ë(x)(s(x)&f(x))(j) where {s := stumbled, f := fell, j := John}

It is clear from the indicated canonical forms of these two terms that they are
not synonymous and they render correctly (28) as a conjunction and (29) as a
predication. In fact, easily,

ë(x)
(

stumbled(x)& fell(x)
)

(John)

≈ ë(x)(s(x)&f(x))(j) where {s := stumbled, f := fell, j := John}

so that the explicit rendering captures coordination correctly, in this example, while
it misses on the co-indexing: the formal term in (30) is not synonymous with any
explicit term. This is an argument within referential intension theory, of course,
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but the (apparent) identification of the explicit renderings of (28) and (29) suggests
that rendering in LIL produces the wrong logical forms, and so they cannot serve as
representations of meaning in any theory which derives meaning from logical form.

§3.27. The symmetry of identity statements. Let us also keep the promise made
in §2.9, to show that with the Montague (quantifier) renderings, the identity state-
ment “the evening star is the morning star” is not referentially synonymous with its
converse, i.e.,

ESMont(ë(u)MSMont(ë(v)(u = v))) 6≈ MSMont(ë(u)ESMont(ë(v)(u = v)))(32)

We assume that

ESMont ≡ theMont

(

first(evening(star))
)

MSMont ≡ theMont

(

last(morning(star))
)

,

where first, evening, last,morning : (ẽ → t̃) → (ẽ → t̃) are adjectives, such that, for
example, if p is the property of being a “star” visible in the evening sky and x is a
“star”, then

first(p)(x) ⇐⇒ x is visible before any other evening star.

Moreover, the Montague description operator “theMont” acts on relations and pro-
duces quantifiers, i.e.,

theMont : (ẽ → t̃)→ q̃.

We will also assume that theMont is a constant of L
ë
ar denoting this operator, but the

other relevant terms (first, evening, . . . ) may be complex, and it is this which makes
the non-synonymy argument a bit tedious.

Proof of (32). Assume the opposite, and also, for simplicity, at first, that first

and last are constants. Easily,

ESMont(ë(u)MSMont(ë(v)(u = v)))

⇒ theMont(h)(r) where {h := first(es), es := evening(star),

r := ë(u)MSMont(ë(v)(u = v))},

MSMont(ë(u)ESMont(ë(v)(u = v)))

⇒ theMont(p)(r) where {p := last(ms), ms := morning(star)

r := ë(u)ESMont(ë(v)(u = v))}.

The subsequent reduction of these terms to canonical form will not affect their
heads and the assignments to h and p which are already explicit and irreducible,
and so by Theorem §3.4 we will have

ESMont(ë(u)MSMont(ë(v)(u = v)))

⇒cf theMont(pi ) where {pi := first(pj), p1 := A1, . . . , ps := As},

MSMont(ë(u)ESMont(ë(v)(u = v)))

⇒ theMont(pk) where {pk := last(pl ), p1 := B1, . . . , ps := Bs},
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where

|= theMont(pi) = theMont(pk), |= first(pj) = last(pl ), |= Am = Bm (m = 1, . . . , s).

Now

6|= theMont(pi) = theMont(pk)

if the locations pi and pk are distinct, simply because the operator theMont is not
constant; and so we must have that pi ≡ pk . Thus

|= first(pj) = last(pl ),

which is absurd, whether the locations pj and pl are distinct or identical.
The argument is just a bit more tedious if first and last are complex terms. a

§4. Local meanings and demonstratives. In this section we will consider two stan-
dard puzzles about substitutivity in the Philosophy of Language. Both of these have
been introduced in the literature as puzzles about belief, but all they assume about it
is a principle already found in Frege: that if a rational person can reasonably believe
A and not believe B in the same context (state), then A and B are not synonymous.
Thus they are really puzzles about synonymy, and it is easy to formulate them pre-
cisely within the theory of referential intensions and see what (if anything) it has to
say about them—and they about it.
At the end of the section we will also make a brief comment about the relevance
of referential intensions to the understanding of “potential knowledge”.

§4.1. Dependence of belief statements on the state. I believe now that 9931 is a
prime number, but I did not believe it last year, although “9931 is a prime number”
certainly meant the same then as it does now; it is my belief system which changed,
after I did some computations. On the other hand, I also believe now that John
lovesMary and I did not believe it last year, althoughmy beliefs about love have not
changed; it is just that “John loves Mary” meant something quite different then—it
was, in fact, false, as John first met Mary in January. Thus the state affects belief
statements in two independent ways, as our system of beliefs but also the meaning
of sentences depend on it. It is useful to separate these two effects, and take as the
objects of belief the situated (local) meanings of Carnap intensions.

§4.2. An utterance29 is a pair (A, a) of a closed Carnap intension A : t̃ and a
state a. To deal effectively with these quasi-syntactic objects, it is useful to add to
the language Lëar a parameter a for each state a, so that we can identify an utterance
(A, a) with the term A(a) : t. These state parameters are not constants, and from
the syntactic point of view they behave exactly like pure variables of type s for which
the value of every assignment has been fixed. For example,

loves(John,Mary)(a)⇒cf loves(j,m)(a) where {j := John, m := Mary},

and the term on the right is the canonical form of the utterance on the left because
it is irreducible—which it would not be if a were a constant.

29Perhaps a misnomer, the term is chosen because one of the basic and most puzzling functions of
the state is to specify the speaker (“I”), the time (“now”), etc.
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Notice that once we add state parameters to the language, they can occur any-
where in a term, like variables; but by “utterance” we will always mean a term of
the form A(a), where A is a closed and parameter-free Carnap intension.
The referential intension int(A(a)) models the local meaning of the Carnap in-
tension A in state a. This function is very simple in the present theory; because if A
is closed and

A⇒cf A0 where {p1 := A1, . . . , pn := An} : t̃,

then by the recap rule,

A(a)⇒cf A0(a) where {p1 := A1, . . . , pn := An} : t,

so that the parameter a occurs only in the head part of A(a). Thus int(A(a)) is
obtained from int(A) by leaving the body of the recursor untouched and simply
applying its head function to the state a.

If A(a) ≈ B(a), we say that A and B are (locally) synonymous in state a.

With these notions in place, we can now formulate a much-simplified, monolin-
gual version of the Pierre puzzle in Kripke [1979].

§4.3. Los Angeles. Petros emigrated from his native Greece to the United States at
a rather advanced age, and immediately fell in love with the city of Los Angeles, where
he settled. Every chance he gets he declares proudly:

I live in Los Angeles.(A)

When, however, a new acquaintance who had heard of this tried to start conversation
with an innocent “I hear you live in LA”, Petros looked puzzled, declared again that
he lives in Los Angeles, and added emphatically:

I do not live in LA.(B)

Let us now stipulate that the language has constants

Los Angeles, LA : ẽ

which refer rigidly to the same largest city in California, so that

|= Los Angeles = LA.(33)

This is reasonable, as both abbreviations of the full name of Los Angeles are well
established,30 and it implies that

Los Angeles ≈ LA,(34)

since Los Angeles and LA are explicit and irreducible. The Compositionality Theo-
rem §3.22 now yields

reside(I, Los Angeles)(a) ≈ reside(I, LA)(a)(35)

for the state a of Petros’ two utterances, whatever term (or constant) renders the
residence relation. Thus Petros appears to (rationally) believe one utterance and
disbelieve a synonymous one, which contradicts our taking utterances as the carriers
of belief.

30The full name of LosAngeles isEl Pueblo deNuestra Señora, la Reyna de Los Angeles de Porciúncula.
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The common-sense resolution of the puzzle was expressed by Petros’ sisterMaria,
who commented to those present when her brother made his remarks,

He doesn’t know that Los Angeles is LA.(36)

NowKripke argues, correctly, that this does not amount to an explanation, because
(with the assumptions we have made), Maria’s comment is synonymous with

He doesn’t know that Los Angeles is Los Angeles,

which robs it of its explanatory power, and is probably false. So, still following
Kripke, we have a genuine puzzle, which means that the example fails to satisfy one
of our basic assumptions about semantics; and the most likely culprit, in this case,
seems to be Frege’s famous doctrine about knowledge of the language:

The sense of a proper name is grasped by everybody who is sufficiently
familiar with the language or totality of designations to which it be-
longs . . . Comprehensive knowledge of the thing denoted . . . we never
attain (Frege [1892], 27]).

To resolve the puzzle, we must argue that someone “sufficiently familiar with the
language” in Frege’s sense cannot (rationally) utter in the same state both (A)
and (B), in other words, that Petros is not a language speaker—he is incoherent.

§4.4. Language speakers. There are probably no English speakers who satisfy
Frege’s stringent criterion of “grasping the totality of designations” of the language.
“The language speaker” is an idealization, which we assume in order to develop
a logical theory of meaning, much as we assume the existence of perfect vacuum
and complete absence of friction in order to develop a mathematical theory of
Newtonian mechanics. It is not an internal matter of logic, and its utility must
be judged by the plausibility of the conclusions derived from it together with the
other (also idealized) hypotheses of the theory. Nevertheless, it is worth examining
exactly how much of Frege’s doctrine about language speakers we need to accept,
and trying to formulate it in logical rather than metaphysical terms.
What does it mean to grasp the sense of a linguistic expression? It is generally
assumed that Frege understood senses to be abstract objects, functions and the
like, and this already leads to classical metaphysical questions: how do we “grasp”
0, or the notion of natural number? Moreover, unlike Frege, we have allowed
constants which refer directly and rigidly to objects that are definitely not abstract,
like Los Angeles, and this complicates the problem: part of the referential intension
of reside(I, Los Angeles)(a) is the constant function with value Los Angeles, i.e.,
essentially, Los Angeles (the object), and I have no idea what it means to grasp it. It
is good to replace metaphysical hypotheses of this type by assumptions which can
be formulated in logical terms. The key to this is Maria’s explanation (36), if we
understand it not within the language, but as a metalinguistic claim about Petros’
insufficient knowledge of the language, i.e., in the form

He doesn’t know that “LA” is another name for Los Angeles.

In short, Petros is incoherent not because he cannot “grasp Los Angeles” (which
may not be possible), but because he does not know the crucial, denotational
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identity (33), which implies the synonymy (34). Thus, what we need to assume of
a language speaker is that (at a minimum) he knows all true identities

|= a = b(37)

between constants of the language, of any type. This is a tall order, to be sure, and
Petros fails it, but it is a much easier test to make precise (and pass) than Frege’s
demand about “grasping”. After some forty years of living in Los Angeles, I still
make no claim that I can “grasp it” (whatever that means), but I certainly know
that

|= Los Angeles = LA,

and I use both of these names interchangeably, often with no recollection of which
one I employed in any particular utterance.

§4.5. Is referential synonymy decidable? Unfortunately, a full-bodied logical ver-
sion of Frege’s doctrine about “grasping senses” demands more of the language
speaker than the knowledge of all identities between constants as in (37). For
example, with the most natural assumption about the meaning of “between”, easily

(38) Los Angeles is between the desert and the sea

≈ Los Angeles is between the sea and the desert,

and the language speaker should recognize this synonymy along with all other
synonymies. In particular, if we do not want to endow the language speaker with
truly supernatural abilities, doing full logical justice to Frege’s “grasping doctrine”
requires proof of the following purely technical

Main Conjecture. If the set of constants K is finite, then the relation of referential
synonymy between closed terms of Lëar(K) is decidable.

31

This is still open, although it was shown in Moschovakis [1994] for the lan-
guage FLR, which extends a reasonably large fragment of Lëar.

32 By the Referential
Synonymy Theorem §3.4, the Main Conjecture is equivalent to the decidability of
denotational identities of the form

|= A = B

between explicit irreducible terms A, B . For example, if we assume for simplicity
that “between” is a constant, then (38) follows by compositionality from

|= between(x, y, z) = between(z, y, x),

which is a denotational identity between explicit, irreducible terms. The language
has, however, many and complex explicit, irreducible terms, and so the proof of the
full conjecture is not all here.
For a satisfactory development of a theory of belief in which the belief carriers are
utterances, we would also need to establish the decidability of synonymy between
the parts of utterances in which the parameter a occurs. The question is not so
simple to make precise, and we will leave it for Kalyvianaki and Moschovakis [].

31There is some evidence that Frege believed some version of the Main Conjecture, on the basis of a
1906 letter to Husserl, see Heijenoort [1985].
32There is unfortunately a gap in the proof given in Moschovakis [1994], but it can be easily filled and

the result is correct.
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Finally, it should be pointed out that although a proof of the Main Conjecture
is highly desirable, the status of the conjecture does not affect the development of
referential intension theory or its possible applicability to computational semantics.
If the Main Conjecture is false, well, then no human being can be a language
speaker in principle—but then we already know that, in practice, there are no
(perfect) language speakers.

We now turn to the second puzzle, which was introduced by Salmon and Soames
in the introduction to Church [1962] and which is worth quoting verbatim.33

§4.6. Is he Scott? Let us suppose that in a book-signing ceremony given by “the
author of Waverley”, a cleverly disguised Scott autographs King George’s copy of
Waverley. King George, being fooled by Scott’s disguise, concludes that Waverley was
written by someone other than Scott. He sincerely declares

He is not Scott(D)

pointing at the disguised author. Yet King George surely disbelieves, and would vigor-
ously deny that

Scott is not Scott.(E)

Now the puzzle comes from the circumstance that

He(a) = Scott(a)(39)

for the state a at the book-signing, which implies immediately that

He(a) ≈ Scott(a),

since these two terms are explicit and irreducible. One might suspect from this that
(skipping the irrelevant negations)

(

He is Scott
)

(a) ≈

(

Scott is Scott
)

(a), (Caution: this is false!)(40)

and that would make King George guilty of incoherence. But (40) is not true:

(41)
(

He is Scott
)

(a)
render
−−−→

(

He = Scott
)

(a)

⇒cf (h = s)(a) where {h := He, s := Scott}

≈ h(a) = s(a) where {h := He, s := Scott},

(42)
(

Scott is Scott
)

(a)
render
−−−→

(

Scott = Scott
)

(a)

⇒cf (s
′ = s)(a) where {s ′ := Scott, s := Scott}

≈ s ′(a) = s(a) where {s ′ := Scott, s := Scott},

and by the Referential Synonymy Theorem §3.4
(

He = Scott
)

(a) 6≈
(

Scott = Scott
)

(a),(43)

simply because

|= He 6= Scott.

33Salmon and Soames started from a related puzzle of Church [1962], which is also about belief but
employs variables rather than descriptions or demonstratives.
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So George IV makes two non-synonymous utterances, one false one true; he may
be muddled, but he is not incoherent.

§4.7. Individual concepts in utterances. The good King can hold onto his erro-
neous belief that the man who autographed his book is not himself, while poor
Petros is not allowed to believe falsely that he does not live where he lives, on pain
of incoherence. This is because, intuitively: if you mention an individual concept,
then that (full) concept is part of the meaning of your utterance.34 In the two puz-
zles above, Los Angeles, LA, He and Scott are all parts of the relevant terms, but
Los Angeles = LA, which dooms poor Petros, while He 6= Scott, which saves the
King.
We have already discussed in §4.2 the technical fact behind this claim: the state
parameter a occurs only in the head of the canonical form of an utterance A(a) and
not in its body.
In some more detail, the head of an utterance must have type t, and so it cannot
be c(a) for any constant c : ẽ denoting an individual concept; hence every such
constant which occurs in a closed Carnap intension A : t̃ is a part of the canonical
form of every utteranceA(a) ofA, and every utterance synonymous withA(a) must
contain some constant synonymous with c.

§4.8. Impossible utterances. Technical explanations are not very satisfying: we
are left with the feeling that, whatever the technicalities, the King intended to say
that he does not believe

He(a) = Scott(a),(44)

which seems to mean exactly the same as

Scott(a) = Scott(a).(45)

Well, if theKing had actually denied (44), then, indeed, we would have had a puzzle,
because by compositionality and (39),

He(a) = Scott(a) ≈ Scott(a) = Scott(a).(46)

But the King did not deny (44), and, indeed, he could not have denied (44) be-
cause (44) is not an utterance.35 It is a term of type t, to be sure, if we take “=”
to be the equality relation on Te, but it does not have the logical form A(a) of
an utterance. The basic principle here is that the only syntactic expressions we can
affirm or deny are closed Carnap intensions, which are interpreted in the current state
to produce an utterance; we cannot use the parameter naming the current (or any
other) state, any more than we can use a free variable when we speak.

34Russell would put the city of Los Angeles in the proposition expressed by Petros’ utterance, while
the referential intension of that utterance contains (as a part) the constant function which assigns the
city to every state; there is little difference between the two.
35It may be argued that (by the Gallin interpretation), (44) is exactly what the King denies when his

utterance “He is not Scott” is rendered inLIL and a is the current state. Wewill discuss this inKalyvianaki
and Moschovakis [] and claim that as renderings of utterances in LIL are naturally understood, they
cannot serve as belief carriers—although they express a robust notion of information content, related to
but different from local meaning.
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Supposewe try to correct this deficiency of the language by introducing a constant
book-signing : s̃ which denotes rigidly the relevant state,

den(book-signing)(a) = the state in which the book-signing ceremony took place.

If we replace the state parameter a by the constant book-signing in the terms of (46),
we get

He(book-signing)(a) = Scott(book-signing)(a),(47)

Scott(book-signing)(a) = Scott(book-signing)(a),(48)

and the King can try to deny the first while asserting the second. But the constant
He is a part of (47) and not (denotationally) equal to any part of (48), and so these
two utterances are not synonymous36 and the good King has once more escaped
incoherence.

To summarize the discussion in this section, what we inferred from the Kripke
example was that puzzles which are grounded on a lack of knowledge of the language
are not relevant to the development of Fregean semantics,which assume from the get
go that the “language speakers” know the language perfectly; and we suggested that
the Salmon-Soames puzzle is based on a confusion of the utterance (He is Scott)(a)
with the closed termHe(a) = Scott(a), which means something entirely different—
and is not an utterance.

§4.9. Potential knowledge. Montague—and practically everybody else—admits
a modal interpretation of knowledge: we assume a constant Ki : t̃ → t̃ for each
“agent” i , and we interpret it by

Ki(p, a) ⇐⇒ (∀b ∈ Ts)[Di(a, b)=⇒p(b)],(49)

where, intuitively,

Di(b, a) ⇐⇒ the state b is accessible to i from the state a.

I have dismissed (with many others) this understanding of propositional attitudes
because of the problem of omniscience: by it, if you know one true, mathematical
statement (like 1 + 1 = 2), you know them all. It seems to me that customary
knowledge of the truth of an utterance A(a) is grounded on the meaning of A(a),
i.e., on the referential intension int(A)(a) by the present modeling of meanings; it is
only that (unfortunately), we do not know now how to define properly the meaning
of knowledge claims, i.e., the operation

(A, a) 7→ int(KiA(a)).

On the other hand, if by KiA(a) we understand that the agent i has potential
knowledgeofA(a)—shehas access to the relevant facts, fromwhich she coulddeduce
the truth or falsity of A(a), if only she were smart enough—then the Montague

36The non-synonymy becomes more obvious if we look at the canonical forms of these two terms:

He(book-signing)(a) = Scott(book-signing)(a)

⇒cf (a = b)(a) where {a := He(h1), h1 := book-signing, b := Scott(h2), h2 := book-signing},

Scott(book-signing) = Scott(book-signing)(a)

⇒cf (a = b)(a) where {a := Scott(h1), h1 := book-signing, b := Scott(h2), h2 := book-signing}.
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interpretationmakes perfect sense; and there is no doubt that this notion of potential
knowledge is a natural and useful one, especially in the analysis of the behavior of
computing systems. The only (minor) point perhaps worth making here is that
the referential theory of meaning can incorporate potential knowledge and add
something to it: the reduction

KiA⇒ Ki(p) where {p := A}

provides a meaning (not just a truth value) to the potential knowledge claim, so that
“knowing that there are infinitely many prime numbers” at least means something
different from “knowing that 1 + 1 = 2”, even though the two potential knowledge
claims are denotationally equivalent.

§5. English as a programming language. The starting point for the work reported
in this article, was the insight that a correct understanding of programming lan-
guages should explain the relation between a programand the algorithm it expresses,
so that the basic interpretation scheme for a programming language is of the form

program P 7→ algorithm(P) 7→ den(P).(50)

It is not hard to work out the mathematical theory of a suitably abstract notion of
algorithm which makes this work; and once this is done, then it is hard to miss the
similarity of (50) with the basic Fregean scheme for the interpretation of a natural
language,

term A 7→ meaning(A) 7→ den(A).(51)

This suggested at least a formal analogy between algorithms and meanings which
seemed worth investigating, and proved after some work to be more than formal:
when we view natural language with a programmer’s eye, it seems almost obvious
that we can represent the meaning of a term A by the algorithm which is expressed
by A and which computes its denotation. This is the view which I have tried to
explain and apply in this article.
Aside from the relation between algorithms and meanings, programming lan-
guages resemble natural languages more than they resemble the classical, formal
languages of logic, both in their complexity and also because they exhibit some nat-
ural language phenomena which are absent from formal languages.37 These ideas
are well known and understood, I have used them in the main part of the article,
and I will not discuss them further here. I will also not try to explain my take on
basic philosophical questions like what it means to “define”, “represent faithfully”
or “explicate” meaning (or any other notion) in set-theoretic terms; I tried my best
to be as clear on these issues as I can inMoschovakis [1998], and it is unlikely that I
can improve on it in this brief section. So I will confine myself here to a few, general
remarks on the semantics of programming languages, and to motivating the specific
choice of “abstract algorithms” which can justify the scheme (50).

§5.1. Denotational semantics for programming languages. These were introduced
in Scott and Strachey [1971], and they have been developed very extensively since

37The distinction between “lexical” and “dynamic” scoping in Lisp, for example, is very much like (if
not identical to) that between the de dicto and de re readings of sentences which involve demonstratives,
i.e., Kaplan’s main problem in Kaplan [1978b].
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then by Scott and his students and followers. Scott’s aim was to construct Fregean,
compositional semantics of denotations for programming languages: he showed
how to assign a semantic value to each syntactically correct part of a programming
languages by “structural recursion” on the syntax, so that ultimately each program
is assigned a denotation. The theory is mathematically challenging (and corre-
spondingly interesting), not only because the syntax of programming languages is
complex, but also because what programs denote is not always simple: sometimes
it is just a number or a function, but it can also be a sequence of “acts” (printouts,
for example, or pictures on a screen) or an “interactive behavior”—and to make the
theory precise, these objectsmust be coded by appropriate, mathematical structures.
The development of denotational semantics represented a fundamental advance
in the study of programming languages, both in our understanding of them and
also in using them. Among other things, it made precise what it means for an
implementation of a programming language to be correct: it must “execute” each
program P so that the “output” is the correct denotation of P, as predicted by the
agreed-upon denotational semantics for the language.
At the same time, Scott’s theory is peculiarly incomplete in that it makes no room
for the notion of algorithm which (one would think) is at the heart of the matter.
Consider, for example, the problem of “sorting” (putting in alphabetical order) a
long list of words u. There are many algorithms which will do this—the bubble sort,
themerge sort, the quick sort etc.— and they differ greatly inmanyways, for example
their efficiency. They can all be “programmed” (expressed) in every suffucently rich
programming language L, but the denotational semantics of L cannot distinguish
between them, as they all have the same denotation, the function which assigns to
each u its alphabetized rearrangement. And so it seemed to me that Scott semantics
should be refined by the introduction of algorithms as the primary semantics values
of programs, which then determine their denotations, i.e., by adopting the basic
interpretation scheme (50).
In fact, it is not difficult to work out this refinement of Scott’s theory, because
almost all the technical tools required are already present in themathematical theory
of denotational semantics. The only subtle difficulty was the need to uncover the
correct notion of algorithm, and I will turn to this next.

§5.2. What is an algorithm?38 The classical Euclidean algorithm for the com-
putation of the greatest common divisor of two natural numbers can be expressed
succinctly by the recursive equation,

gcd(x, y) = if (rem(x, y) = 0) then y(52)

else gcd(y, rem(x, y)) (x ≥ y ≥ 1),

where the remainder rem(x, y) is the unique number r such that for some q,

x = yq + r, 0 ≤ r < y;

and the gist of the view about algorithms defended in Moschovakis [1998] is that
(52) is all there is to the Euclidean algorithm—this single equation specifies what the

38The arguments here are from Moschovakis [1998], which explains them in much more detail using
the mergesort as the basic example.
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algorithm is, and expresses it so that its fundamental properties can be most easily
deduced. Consider the following.

1. Implementations. It is quite simple to verify that equation (52) is true of the
greatest-common-divisor function,39 but it does not look like the usual “instruc-
tions” and “commands” that we expect of an algorithm specification. Such instruc-
tions, however, are easy to extract from (52), if we read it as a “self-referential”
definition of gcd(x, y). For example, let (recursively)

r0 = x, r1 = y, rn+2 = rem(rn , rn+1);

these “successive remainders” can be computed by applying (52) repeatedly, and

if k = the least n such that rn = 0, then gcd(x, y) = rk−1.

Or we might “re-write” (52) as a “while program”,

X := x;Y := y; while(Y 6= 0)
(

T := X ;X := Y ;Y := rem(T,Y )
)

; return X.

It might appear that some understanding of “the Euclidean algorithm” beyond the
information coded in (52) is required in order to extract a computational procedure
from the equation, but this is not true: these extraction processes go by the fancy
name of implementations of recursion and they can be automated—they are part of
what a “compiler” or “interpreter” does for a sufficiently richprogramming language
(like Lisp or Pascal) whose syntax allows recursive definitions such as (52).

2. Recursive equations vs. implementations. Shouldn’t the Euclidean “be” (or be
represented by) one of the specific implementations just discussed rather than some
other, more abstract object directly expressed by (52)? Well, the argument now is
which one? In fact, there are many more implementations of the Euclidean than the
two we mentioned, at least one for every programming language in which we can
“program” (52) and for every processor which can execute the compiled version of
this program. Which of these has a stronger claim “to be” the Euclidean? And
what is common between all these different implementations which are (evidently)
related by being “implementations of the Euclidean” if there is no single, abstract
object which “is” the Euclidean?

3. Properties of the Euclidean algorithm. Let

då(x, y) = the number of divisions required to compute gcd(x, y) using (52),

so that by reading (52) as a self-referential definition,

då(x, y) = if (rem(x, y) = 0) then 1(53)

else 1 + då(y, rem(x, y)) (x ≥ y ≥ 1).

From this it follows by an easy induction on y40 that

då(x, y) ≤ 2 log2(y),

39It is true if y divides x; and in the opposite case, when rem(x, y) > 0, easily, for every d

[d divides x and d divides y] ⇐⇒ [d divides y and d divides rem(x, y)],

so that gcd(x, y) = gcd(y, rem(x, y)).
40You need to consider three cases: whether y divides x; otherwise, whether rem(x, y) divides y; and

otherwise, whether rem(y, rem(x, y)) divides rem(x, y).
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which is one version of the basic complexity estimate of the Euclidean. There are
better versions of this and many other important properties of this algorithm, but
they can all be deduced in similar ways directly from (52), without any specific
reference to any specific way in which the Euclidean is implemented.

So it appears natural to identify the Euclidean algorithm with the “semantic
content” of (52), and at first blush this can be none other than the function

f(x, y, p) = if (rem(x, y) = 0) then y else p(y, rem(x, y)),(54)

wherep is a variable ranging over binary (partial) functions on the natural numbers.
Notice first that this assumes the remainder operation and the conditional construct

C (u, s, t) = if (u = 0) then s else t

as “givens”, not to be computed but to be “called”. Moreover, (54) does not
account for the “explicit computation” required to evaluatef(x, y, p) for any given
x, y and p. Thus the final step is to break down the computation of f(x, y, p) to
its elementary steps—direct calls to the givens—and this is what (in the analogous
case) the reduction calculus of this article adds to the process. When we do it here,
we obtain the canonical form

gcd(x, y) = p(x, y) where {p := ë(x)ë(y)C (q1(x, y), y, r(x, y)),

q1 := ë(x)ë(y)rem(x, y),

r := ë(x)ë(y)p(y, q2(x, y)),

q2 := ë(x)ë(y)rem(x, y)}

which leads to our representing the Euclidean by the recursor

å = (α0, α1, α2, α3, α4),

where, in effect (skipping the formal assignments),

α0(x, y, p, q1, r, q2) = p(x, y),

α1(x, y, p, q1, r, q2) = ë(x)ë(y)C (q1(x, y), y, r(x, y)),

α2(x, y, p, q1, r, q2) = ë(x)ë(y)rem(x, y) = rem,

α3(x, y, p, q1, r, q2) = ë(x)ë(y)p(y, q2(x, y)),

α4(x, y, p, q1, r, q2) = ë(x)ë(y)rem(x, y) = rem.

It is an algorithm of the structure (N, C, rem) where N is the set of natural numbers
and C , rem are the conditional construct and the remainder function taken as
“given”.41

The same basic process identifies the algorithms of every mathematical struc-
ture A, comprising some given universes and certain operations on them taken as
“given”. Notice that these algorithms are always relative to the givens, and so they
do not determine “absolutely computable” functions unless the givens are abso-
lutely computable. For the case at hand, the process was somewhat more complex,
because the intended interpretation of Lëar(K) in §1.4 includes higher-type givens,

41And it is tempting here to co-index the two instances of rem, which will yield a minor (and not
more efficient) variation of the Euclidean.
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and somewhat simpler, because we did not need to consider truly recursive (self-
referential) algorithms (like the Euclidean), and so the simpler, acyclic recursors
sufficed.
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