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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 63, Number 2, June 1998 

THE LOGIC OF RECURSIVE EQUATIONS 

A. J. C. HURKENS, MONICA McARTHUR, YIANNIS N. MOSCHOVAKIS, 
LAWRENCE S. MOSS, AND GLEN T. WHITNEY 

Abstract. We study logical systems for reasoning about equations involving recursive definitions. In 

particular, we are interested in "propositional" fragments of the functional language of recursion FLR 

[18, 17], i.e., without the value passing or abstraction allowed in FLR. The 'pure," propositional fragment 

FLRo turns out to coincide with the iteration theories of [1]. Our main focus here concerns the sharp 

contrast between the simple class of valid identities and the very complex consequence relation over several 

natural classes of models. 

In [18, 17], Moschovakis introduces the language FLR to study general recursive 
definitions of the form 

p(u) f (u, p). 

The functional f determines how to compute values of the function (or "program") 
p based perhaps on other values of p. A key special case consists of simple fixed- 
point equations 

P f (P), 

in which the dependence of p on some "input" has been eliminated or suppressed. 
Therefore, we investigate here two "propositional" fragments of FLR: FLRO (first 
introduced as the language Y in [19]) and ELR. Completeness questions for FLRO 
and ELR are already far from trivial, and the simpler language makes broader 
classes of models more accessible. 

To briefly summarize, FLRO takes a primitive stock of variables and function 
symbols, and it forms functional terms in the usual way and recursion terms by the 
construction 

(1) B where {xl = Al, x11 = A1l1. 

The variables xi typically occur in the terms Ai, so in fact FLRO can express systems 
of simultaneous fixed-point equations. Definitions of this kind occur in logic and 
computer science in a wide variety of settings. 

Of course, each time a term of the form (1) is used, one must be able to find 
well-defined semantics. (This is to avoid terms like x where {x = 1 + x} or 
R where {x E R +-* x V R}.) The most common general way to provide semantics 

Received October 4, 1996. 
During the preparation of this paper, Whitney was supported by the Fannie and John Hertz Foun- 

dation and by a grant from the National Science Foundation. 

? 1998, Association for Symbolic Logic 
0022-481 2/98/6302-0009/S3.80 

451 



452 HURKENS, McARTHUR, MOSCHOVAKIS, MOSS, AND WHITNEY 

for fixed point terms is by appeal to some sort of result on fixed points of monotone 
maps on a directed-complete partial order (cpo). This covers many of the cases for 
computer science. On the other hand, fixed points arise in many other contexts, 
and for this foundational study we present a very general notion of structure for 
FLRO. In particular, we wish to admit "intensional" models, in which distinct 
functions may take identical values at all points of a structure but be assigned 
different fixed points; this type of intensionality is at the core of many studies of 
concurrent computation. 

Early attempts to understand and prove properties of recursive definitions in var- 
ious specific contexts include [5, 6, 15, 13]. The general study of recursion equations 
has been pursued under several guises since then: I as recursive applicative program 
schemes [4], u-calculus [2], and perhaps most notably as the iteration theories [10, 1] 
of Bloom and Esik. The latter work builds on Lawvere's introduction of algebraic 
theories [14] in order to get categorical presentations of universal algebra, and El- 
got's use of these in connection with flowchart schemes [7]. Thus, the relationship 
of this paper and [1] is roughly that between ordinary equational logic and algebraic 
theories. In particular, we will provide an explicit "dictionary" showing that the 
categories of FLR0-structures and iteration theories are equivalent, so that answers 
to many basic questions can be read off from known results in the iteration theory 
context. On the other hand, we present new results and questions suggested by 
the logical formulation, and this presentation will hopefully make the subject more 
accessible to those with a mathematical logic background. 

?1. Elementary formal language of recursion. 
1.1. Syntax. Fix a countably infinite set {Vl, V2, V3,.. .} of variables. A signature 

r is a ranked set of function symbols; in other words, each symbol f has an associated 
arity, the (nonnegative integer) number of formal arguments it will take. Write l,? 
for the subset of r consisting of n-ary symbols. The following induction defines the 
terms of the language FLRo (). 

(1) Any variable x is a term by itself. 
(2) f (E1, ... I, E,) is a term if f E la and El through En are terms. 
(3) Eo where {xl = El,... , x, = El} is a term for any distinct variables 

x1, .. ., xn and any terms E0, . . ., El. 
Intuitively, the second clause corresponds to function composition, and the third 

clause gives syntax for the solution of systems of recursive equations. The following 
expression schematically summarizes the whole definition: 

E := x I f (El, . .., En1) I Eo where { xi = El, I .. I x17 = En1 

Syntactic notions concerning FLRo are defined as usual, including closed and 
open terms, substitutions, free substitutions, and fresh variables. The where in 
clause 3 binds variables xl through x,. 

We fix some notational conventions. The plain symbol g will abbreviate go 
for nullary function symbols (i.e., constant symbols). The special symbol I will 

I Another approach to axiomatic theories of recursion, algebraic recursion theory [21, 11, 12], has 
a different emphasis: it confines itself to least (or initial) fixed points, and seeks to understand the 
additional combinatorial properties needed to support stronger results analogous to classical recursion 
theory. 
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abbreviate the term x where {x = x } (the exact choice of variable is irrelevant). In- 
formal vector notation will be used throughout, e.g., E where {x = Al abbreviates 
E where {xl = A1, ... , x, = A, } . When s is a function from variables to terms, 
we write E[s] for the result of substituting the term s (x) for the free occurrences 
of x in E, for each x in the domain of s. Sometimes the substitution s may be 
displayed explicitly, e.g., E[M/x*l] denotes the result of substituting the FLRO term 
Mi for xi, for each xi in the sequence x*. Further, if the term E has been written as 
E(xl,. . , Xn), displaying (some of) its free variables, then the substitution E[M/lZ] 
may also be written E (M1, . . ., M,,) . Finally, A _ B means that the expressions A 
and B are identical. 

Alphabetic variants. Suppose - is a relation on some variables. Define A 
B to mean that A and B are syntactically identical up to '-, i.e., that there is 
some C(ZI, . , Zn) and lists of variables x1,... , x, and yi, . , y, (which may have 
repetitions) such that A _ C (x, I ... , xl), B C (y1,. . . , y),,), and xi ,- yi for all i. 

Formulas. If A and B are terms, then for any sequence of distinct variables x (in- 
cluding the empty sequence), Vx (A = B) is a formula of FLRO (r). Intuitively, the 
formulas will be used to express equations, such as f (x) = g (y), which might hold 
for some particular x and y, and identities, like Vx (f (x) = - (f (x))), expressing 
the idempotence of f. This Vx`is another variable-binding operator: all occurrences 
of variables from x-which are free in A and B are bound in Vx (A = B), and all other 
occurrences remain free or bound as they were. A closed formula will be known as 
an identity. Substitutions apply to formulas as a whole; Vx (A = B)[M/J] replaces 
free occurrences of the variables in the list V wherever they occur in A or B, but 
of course this substitution will not replace any occurrences of variables from x. If 

bVx` (A = B) is a formula, then Vy (qi) is an abbreviation for Vy, X (A = B), so 
that it makes sense to quantify any formula universally. 

1.2. Poset semantics for FLRo. Interpreting the variables of FLRo as ranging 
over the elements of a poset D leads to three natural classes of semantic structures 
which will be central throughout this paper. The full definitions follow, but briefly 
the classes are Cont, in which D is complete and the functions are continuous; 
Mon, in which D is complete and the functions are merely monotone; and Wk, 
the "weak" structures in which the poset may not be complete but nevertheless still 
contains "enough" fixed points to interpret FLRo.2 

First, let D be (directed-)complete. Given a signature r, choose a monotone 
function fA: D'2 -> D for each f in rc. Now assign a denotation 

A(x) E: DZ1 >- D 

to each FLRo (-) term E and list of distinct variables x = xl,.. I , xn1 containing the 
free variables of E, via the following induction: 

(1) A(xl,.. ., x,,) xi is the usual ith projection from D' to D. 
(2) If A(x?) Ei = gi, then A(x) f(E1,.. ., E,J) is the function which takes d E D" 

to fA (gl (d0,... , gill (dI), i.e., the composition of the m-ary fA with gi through gM,, 
(3) Suppose that E _ E0 where {yi E,... ,yl,, = E,,}. To compute 

(A( -)E) (dT, first suppose that none of the x1 happen to coincide with any of the 

2These classes are not themselves new; indeed, Cont is the standard environment of "domain theory," 
and in [9], Mon is called ./1 and Wk is the class of "concrete Park theories." 



454 HURKENS, McARTHUR, MOSCHOVAKIS, MOSS, AND WHITNEY 

yi. Let f i = A(yl,. . ., yy, x) E for i from 0 to m. The functions f I through fm 
form a system of m functions from D?1+`? to D, which will in fact all be monotone. 
(This fact is proved by an easy simultaneous induction with this definition.) Thus, 
by a standard theorem on least fixed points (such as the Knaster-Tarski Theorem) 
there will be least elements cl, ... , c,, in D satisfying 

C I fI(C-d) 

(2) 

C71 - fm (c(, dj. 

These least fixed points are obtained by iterating fI through f,, (perhaps trans- 
finitely), starting from the least element of D. Then for d E D", set 

(A (X-) E) (d) = fo (c 1 ... CM , d). 

If some of the yi do occur in x, choose a list of variables x' in which each yi has 
been replaced by a variable fresh for the E. (It does not matter which sequence x ' 
is chosen.) Set A(x) E = A(V7) E in this case. 

This operation A taking the n -tuple x and term E to a function Dn -> D is called 
the standard denotation map for the assignment f -* fA. As a simple example, note 
that the denotation A() I of I is always the least element of the poset D. It is 
easy to see that the denotation of every open term is in fact a monotone function, 
which means it will always be possible to find the least fixed points required in the 
third clause. Let Mon be the collection of all standard denotation maps. If fA is 
continuous for every function symbol, then the denotation of every open term is 
continuous as well; Cont is the corresponding subclass of Mon. 

On the other hand, it may happen that the poset D is not complete, but that the 
system of equations (2) nevertheless always has least prefixed points Cj in the sense 
that whenever fi s(Z d( < zi for each i, then Ci < zi. In this case, the inductive 
definition above still makes sense and yields a denotation map; let Wk be the 
collection of all denotation maps that arise in this way. Clearly Cont C Mon C 
Wk. 

For an example in Cont, consider D = N - N, the collection of all partial 
functions on the natural numbers, with its usual partial order. Suppose EXPA is the 
map which takes a partial function f (n) to f '(n) defined as follows: 

f n 1 if n =0 
f '(n) = {2f (n - 1) otherwise. 

Then the denotation AO x where {x = Exp(x)} will be the exponential function 
g(n) = 2'. This recursion on D is essentially ordinary recursion on the natural 
numbers, although FLRO (unlike the full FLR) cannot refer to specific natural 
numbers themselves or the way in which a partial function depends on its argument. 

Another important example is the poset str(A) of streams over an alphabet A. 
This consists of two parts: the "divergent" streams, finite and infinite strings from A; 
and the "convergent" streams, finite strings consisting of symbols from A followed 
by one t, a "termination" symbol not in A. The streams are ordered by the usual 
initial substring relation, so that the maximal elements of str(A) are exactly the 
convergent streams and the infinite streams. For each symbol a there is a natural 
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prefixing operation x X ax on str(A), which inserts an a at the beginning of the 
stream x. Now the FLRO expression 

x where {x = ax} 

will denote the (divergent, infinite) stream a?? = aaa .... 
Standard identities. Call Vx (A = B) a standard identity if for all standard deno- 

tation maps A E Mon, A(x) A = A(x) B. Insofar as monotone, least-fixed-point 
recursion is the characteristic type of recursion, the standard identities capture the 
valid laws of recursion. As an example of a standard identity, for any unary function 
symbol f we have 

(3) x where {x = f (x)} = f (x where {x = f (x)}). 

In other words, the fixed point of f is fixed by f. The class of standard identities 
is well-understood, as we'll describe below. 

1.3. FLRO structures. Although the examples from the previous section employ 
the familiar recursion operation of taking least-fixed-points, any "abstract clone" 
can interpret FLRO, if equipped with a notion of recursion. 

DEFINITION. An FLRo(z) structure is a pair R = (I, A) where 1D is a ranked set 
called the universe of the structure, and A is a denotation map on FLRo(r U F), i.e., 
for any term E E FLRO (r U F) and sequence x x1,. . , x,, of variables containing 
all of the free variables of E, 

AV(xl, . ,Xn) E E (D,? 

Every element of the universe acts as a symbol for itself; that is, A is required to 
satisfy 

(4) A(xl, .,Xn) f (XI, nXn) = if for any f 
a 

1,. 

Finally, the denotation map must be compositional, i.e., A must satisfy the following 
conditions for any term E and free substitutions s and t defined on x = xl , x,: 

(5) A(y) (A(x-)E) (s(xl ), .. I S(Xn)) =A(') E [s]. 

(6) If Al(y) s(xi) = A(z) t(xi) for all i, then A(y) E[s] = A(5) E[t]. 

If F is the universe of an FLRO structure R, call the elements of (0 the individuals 
of R, and call the other elements (unary, binary, etc.) transformations. In fact, we 
will use the symbol R to denote the set of individuals (0 as well, in much the same 
way that the name of a group is used for its set of elements. Now, we can think of the 
transformations as acting on R (in a possibly intensional way). Since everything in 
the universe names itself, each transformation f E FD,, induces a bona fide function 
f: R"n - R, called the extension of f, by 

f (. . .,rn) = A() f(ri, . . ., r,,), for each r, .. ., rn c R = (Do. 

The FLRO structure R is called extensional if transformations are determined by 
their extensions, i.e., if f = k implies f = g, and intensional otherwise. (The 
possibility of intensional FLRO structures motivates our use of the neutral term 
"transformations" for the members of FD, as opposed to a more familiar term like 
"operations" which might suggest that these objects must be functions.) 
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The structure R satisfies a formula q VX (A = B) if for all lists of variables 
y including all free variables of qb, A(x, y'A = A(x, jV) B. (It suffices to check the 
minimal list of variables y.) R satisfies a set of formulas if it satisfies each one in 
the set. 

We regard each denotation map in Cont, Mon, Wk as an FLRO structure in 
which (0 is a poset D, (I, is some collection of monotone (continuous) maps 
D- * D, and A is extended in the obvious way to FLRo(r U F), with each object 
naming itself. These familiar, extensional structures serve as the main motivating 
examples for the more general theory presented here. 

The interpretation of where is so far left entirely open, and could be trivial: every 
term in which where occurs might be assigned the same denotation. To avoid such 
uninteresting examples, we will only consider normal FLRO structures R, which 
satisfy the following additional conditions: 

(1) If A(x-, Y) Ai= A(x, y) Bi for each i, then 

A(y) AO where {x = Ad A(y) Bowhere {x = B}. 

(In other words, recursion is compositional in the same sense as function application 
above.) 

(2) R satisfies all standard identities. 
Note that the standard identity (3) already prevents a completely trivial recursion 

operation, unless every transformation fixes the same individual. It might appear 
that assuming all standard identities is too strong, but the axiomatization of the 
standard identities below and the wide range of examples of normal structures show 
that the assumption is not overly restrictive. For example, although the structures 
in Mon and Cont are clearly normal, all of the structures in the much broader 
class Wk are normal as well, a non-trivial fact shown in Section 3.1. 

Any class - of FLRO structures gives rise to a corresponding relation of semantic 
consequence. Let F be a set of formulas and q be any formula. Write F[s] for 
{ y[s] I y F }. Then q is a consequence of F over A, written F Kd a, when the 
following condition holds for all R c - and substitutions s: If R satisfies F[s], 
then R satisfies 4[s]. 

For example, x = x' # f (x) = f (x') for any class of structures, by the compo- 
sitionality condition (6). Also, 

Vx (f (x) = g(x)) xMon X where x = f (x)} = x where {x = g(x)} 

since identical monotone functions have the same least fixed point; but 

f (x) = g(x) xMon X where {x = f (x)} = x where {x = g(x)} 

since it might happen that f (d) = g(d), for a particular d, with no implications 
for the fixed points of the right-hand side. 

In the special case with no hypotheses, we write just 1= q! and say that q! is 
valid in S. This simply means every structure in - satisfies Q. Note that validity 
makes no distinction between equations and identities: A = B is valid if and only 
if Vx (A = B) is valid, for any list of variables x. For this reason, we will loosen 
the terminology slightly, e.g., "standard identity" will refer to any formula (closed 
or open) which is valid in Mon. 
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TABLE 1. The proof system for FLRo. 

Logical Axioms 

(Li) I F) . 
(L2) (Equality axioms) A =A; A = B F B = A; A = B B = C F- A = C. 
(L3) (Replacement) A B F E[A/x] = E[B/x], provided the substitutions are 

free. 
(L4) (Specialization) Vx (X(x)) F- +(E), provided the substitution is free. 

Logical Inference Rules 

(L5) (Weakening) If F - a, then F U A F- q. 
(L6) (Cut) If F, / WF and F F -, then F F -. 
(L7) (Generalization) If F - +(x) and x is not free in F, then IF - Vx (0(x)). 

Recursion Axioms 
(R1) (Head) 

H- A(xl,...,x,)where {x=B} 

= A(xI where {&x = B.,... , x, where {x = B}). 

(R2) (Bekic-Scott) 

I- A where {y = Cx=B} 

- (A where y = }) where {...,x = Biwhere {Y =CC},...}. 

(R3) (Fixpoint) H- A where {x = A} = x where {x = A}. 

Recursion Inference Rule 

(RI) Suppose we are given F and FLRo terms 

A Aowhere {xi = A,... xn = An} and 

B Bowhere {y = B,...,ym = Bm}I 

where no xi occurs in B, no yj occurs in A, and none of the variables xi or 
yj occur free in F. If there is a set of equations I each of the form xi = yj 
such that F, H- AO = Bo and F, H- Ai = BJ for each (xi = yj) E X, then 
F H- A = B. 

1.4. The standard identities. The clauses in Table 1 above inductively define a 
provability relation F H- 0, where F is an arbitrary set of formulas and X is a single 
formula. Note that the clauses labeled "Axioms" are really axiom schema, since 
A, B, C, and E range over arbitrary FLRo terms. For convenience, we write just 

- H-for{y} - . 
The logical axioms and rules (L1-7) are standard and correspond to ordinary 

equational logic. The remaining items reflect the special properties which character- 
ize fixed-point recursion. The Head Axiom (R1) captures the idea that a "where" 
term is evaluated by solving a system of equations and substituting the results into 
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the head term (to the left of where) The Beki6-Scott Axiom (R2) corresponds 
to the theorem of the same name, relating simultaneous and iterated recursion. 
References for this theorem (due independently to Beki6 and Scott) may be found 
in de Bakker [5], who was apparently the first to use this theorem to support a proof 
rule for "program equivalence." Finally, the Recursion Inference Rule (RI) plays a 
central role in this axiomatization, and is certainly the most complex and interest- 
ing rule. The only other proof rule we know of equivalent to Recursion Inference 
is the "Functorial Dagger Implication" (for base morphisms) of Bloom and E'sik 
[1]. However, one may regard (RI) as a descendent of the principle called "Scott 
induction" or "fix-point induction" (see Stoy [22]). The rule (RI) formulates a set 
of instances of this principle which are valid for general (not necessarily continuous, 
as in [22]) least fixed points, and which suffice to establish all valid identities. The 
references [9, 8] investigate this connection in greater detail. The following propo- 
sition is straightforward; the case of Recursion Inference is proved by induction on 
the stages of a recursion. 

PROPOSITION 1 (Soundness). The provability relation F- is soundfor #Mon, i.e., 
F - 0 implies that F #Mon ?,. In particular; every provable identity is a standard 
identity. 

In fact, the proof system axiomatizes the standard identities. Call a normal 
FLRo(z) structure R = (PD, A) reasonably free if the following conditions are satis- 
fied for each pair of distinct function symbols f and g in z: 

(1) The extension f of f is injective, and its image does not contain IR= AO I . 
(Recall I x where {x = x}.) 

(2) f and 
- 

have disjoint images. 

THEOREM 2 (Completeness/Decidability). If R is a reasonably free interpretation 
for FLRo(z), then R satisfies a formula 0 of FLRo(r) if and only if F- 0. There 
is a reasonably free structure in Cont for each signature r, so that this validity also 
coincides with the formula being a standard identity (#Mon ?) and with #Cont J 

Finally, this common validity is decidable. 

As the decidability portion of this result (for non-nested "where") appears in [4], 
and all of its claims are implicit in [1] (see Theorem 6.1.2, and the discussion on 
pp. 191-3), we only briefly indicate a proof, highlighting features that will be useful 
later. A similar proof, in greater detail, appears in [10]. 

The proof of Theorem 2 proceeds in two major steps. The first is purely syntactic, 
and reduces each FLRo term to one in simplified form, i.e., 

E _ Wx where {xl = El,. ..,x, El} 

where 1 < e < n and for each i, either Ei- xi, or Ei-fi,. . . , ( z7 , ) where f i is 
some function symbol and each -j is one of the Xk. 

LEMMA 3 (Simplification). Every closed term of FLRO is provably equal to one in 
simplifiedform. 

The second step attempts to construct an application of the Recursion Inference 
rule between these reduced forms, in such a way that the denotation of the two 
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terms will be different if this construction fails. Given two simplified terms, 

A Xa where {xl = A1,... , x. = A.1} 

B =y, where {Y1 = Bl, ... ,Yn =Bn} 

first consider Aa and Bb,. If they are simply xa and Yb, respectively, both A and 
B provably equal I and we are done. If only Aa - xa (or vice-versa), then 
A and B cannot denote the same individual, as IR is not in the range of the 
extension of any function symbol. Otherwise, Aa and Bb must use the same function 
symbol (since extensions of distinct symbols have disjoint ranges), and in fact 
corresponding arguments to this function must also be equal since its extension is 
invective. This leads to a new sequence of pairs to examine. Proceeding by induction, 
one obtains either a list of equations for applying the Recursion Inference rule, or 
a demonstration that A and B have distinct denotations in any reasonably free 
structure. 

In fact, this argument shows slightly more. The terms to which the Recursion 
Inference rule is applied in the end are just alphabetic variants of each other, so the 
proofs of the hypotheses needed in RI are trivial. Thus, the inference rule RI can 
be replaced with the following schema of identities: 

(Alphabetic Identification identity) Suppose we are given FLRo terms 

A -xa where {x = A,..., xn = An} and 

B yb where {yi = B1, ... yn? = Bn7y = 

where no xi occurs in B and no yj occurs in A. If there is a relation - between 
{xl, -, Xn} and {Y1,. . . , ym } such that Xa - Yb and Ai By whenever xi yj, 
then [A = B. 

The only other consequences of Recursion Inference used (in the Simplification 
Lemma) are the relatively trivial: 

(Part Replacement rule) If F \ ex(Ai = Bi) for each i, 0 < i < n, then 

Fl- Ao where {x = A = Bo where {x- =B} 

(Permutation identity) For any permutation p of { 1 ... n., 

F AO where {x = A} = Ao where {xpI = Ap ,... ,xp, = Apn}. 

Note that the Part Replacement rule just corresponds to compositioriality of 
where, the first condition on normal structures. To sum up these observations, 
let F-, be the provability relation obtained by replacing the Recursion Inference 
Rule with the Permutation and Alphabetic Identification axiom schemes and Part 
Replacement inference rule. 

COROLLARY 4. K-, q$ if and only if [- 0. 
The reasonably free FLRO (z) structure referred to in Theorem 2 is supplied by 

the literally free object in the category of posets interpreting the signature z with 
continuous maps as morphisms. This construction matches that of z1TR on p. 
249 of [1], but we provide a sketch here as the details will be useful below. 

Intuitively, the elements of the free structure -1TR are (finite and infinite) trees 
with nodes labeled by function symbols in r. Technically, define a z-tree to be a 
function t: T -- z where T is a set of finite sequences of natural numbers closed 
under initial segments, such that if a ^ (n) is in T where ar is a sequence and n E N, 
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TABLE 2. Iteration Theory axioms. 

In the following axioms, f and g are arbitrary morphisms with appropriate 
source and target. f . g denotes the composition of f followed by g. (f, g) is the 
pairing of f: n -) p and g: m -) p, possible since n + m is the coproduct of n and 
m in an iteration theory. f ? g is the "separated sum" of f: m -) k and g: n -) 1, 
yielding f ? g: n + m -) k + 1. Finally, a base morphism p: m -- n is one of the 
form ((ii),@,... , (im)n), made up from distinguished morphisms by pairing. The 
base morphism p is said to be surjective if every jn for 1 < j < n appears as one of 
(i)n through (im ) n 

* (Parameter Identity) (f . (id ? g))t = ft g- 
* (Pairing Identity) (f, g) t = (f t (ht, idp), ht), where f: n -) n + m + p, 

g: m -) n + m + p, and h = g * (ft, id,+p). 

* (Fixed Point Identity) ft = f (ft, ide). 
* (Commutative Identity) For any f = (f 1,... f n): n - m +p and gi: m - k, 

write f II (g1,.. . , gn) for the morphism 

Ku (gi Didp),.. . -, n (gD ?idp)): n -3 k + p. 

Then, 

((p . f) | 
(pI,..., pi?))t 

= p (f . (p ?D idW))t, 

where f: n -- m + p, p: in -- n is a surjective base morphism, and the pi: m -_ m 
are base morphisms satisfying pi p = p. 

then n is less than the arity of t (a). The partial order on -r1TR is the (labeled) 
subtree ordering. Finally, to each n-ary function symbol f there corresponds an 
n-ary function on trees f (to,.. ., tn ), operating as follows: If u = f (to,. . , t_ - I 

then u(()) = f (i.e., the root of u is labeled with f) and for longer sequences, 
u((i) ^ a) = ti(al) (i.e., the trees to through t,_i are attached to the root in order). 
The reasonably free properties are not difficult to verify; for the proof this structure 
is actually free, see [1]. 

?2. Correspondence with Iteration Theories. The goal of this section is to show 
that FLRo structures capture exactly the same mathematical structure as the it- 
eration theories of Bloom and Esik. For this purpose, it is convenient to make 
a thumbnail sketch of the definitions; details are in [1]. An iteration theory is a 
category T with objects N, distinguished morphisms In, 2n,... , nn: 1 -- n for each 
n E N which make the object n the n-fold coproduct of 1, and an iteration operation 
*t which takes a morphism f: n -- n + p and yields f t: n -- p. In addition, the 
iteration operation is required to satisfy certain properties; Bloom and Esik give 
many alternative axiomatizations of these. One such axiomatization is summarized 
in Table 2; note that it is shorter than our axiomatization for F- because requiring T 
to be a category already summarizes the logical properties (L1-7). 

One intuition for these definitions is that a morphism g: n -- m is a system 
of n operations depending on m indeterminates, and composition with h: m -+ p 
corresponds to substituting a system of m other operations for these indeterminates. 



THE LOGIC OF RECURSIVE EQUATIONS 461 

TABLE 3. Correspondence between FLRo and iteration theories. 

FLRo [Iteration Theories 

Compositionality conditions (4, 5, 6) Algebraic Theory Properties 

Fixed Point Identity Fixed Point Identity 

Bekic-Scott Identity Pairing Identity 

Alphabetic Identification Identity Commutative Identity 

Recursion Inference Rule Functorial Dagger Identity 

for base morphisms 

The iteration operation should set the ith indeterminate equal to the ith operation 
and "solve." 

Table 3 gives a rough overview of the correspondence between FLRO and iteration 
theories. 

The appendix to this paper gives a detailed sketch of the proof of the following 
theorem: 

THEOREM 5. The categories of iteration theories with iteration theory morphisms 
and FLR0 structures with their homomorphisms are equivalent. 

Thus, iteration theory and the study of FLRo examine the identical mathemat- 
ical structure, albeit from different viewpoints. Bloom and Esik discuss a similar 
correspondence between iteration theories and the ,u-calculus in [2]. The choice 
of formalism highlights certain features and suppresses others: for example, FLRO 
focuses attention on systems of equations and Scott-Bekic in comparison to ,u- 
calculus, where this law is tacitly assumed throughout. Iteration theory emphasizes 
the relationship between substitution and fixed-points with its Parameter Identity 
which is implicit in the other formalisms. In any case, we have "dictionaries" that 
can translate results back and forth. 

?3. The standard identities, part II. Unlike ordinary first-order logic, there are 
striking differences between the valid identities of FLRo and its full consequence 
relation with hypotheses. The standard identities are decidable, and remarkably 
robust over a vast array of different interpretations of where. On the other hand, 
the consequence relation depends very critically on the class of models considered, 
and is typically much more complex: consequence over Cont is not axiomatizable. 

It is well known that many classes of structures have the same collection of valid 
identities: [1] surveys a wide range of such classes, and we would also like to call 
attention to the player structures of [19, 20], which are a class of highly intensional 
models of concurrency which satisfy exactly the standard identities. The results 
of this section illustrate two other, important aspects of this robustness. First, 
the standard identities might seem to say something about an iterative process of 
finding fixed points, particularly because the simplest, natural proofs of Recursion 
Inference (and the weaker Alphabetic Identification) involve induction on stages. 
However, it turns out that the weak structures satisfy the standard identities, even 
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though it may not be possible to iterate to reach fixed points on these structures - 
the required suprema of increasing sequences may not exist. Second, exactly the 
standard identities hold on very restrictive subclasses of Cont: it takes very little 
structure to ensure no additional identities will be valid. 

3.1. Weak structures are normal. Before proceeding to the theorem, it may not 
be immediately clear that there are any weak structures not in Mon. However, 
suppose (D, <, f 1, ... , f,) is an ordinary model for first order logic in which < is 
a partial order, the operations are monotone, and every finite system of monotone 
functions which are elementarily definable from parameters has a least fixed point. 
These properties are clearly first order axiomatizable, the last one by a r.e. list of 
axioms. Every such model defines a weak structure (by dropping < and taking 
all the monotone, definable operations as the universe of the structure). Now 
by compactness, it is easy to find such structures in which the underlying poset 
(D, <) is not directed-complete. In fact, every weak structure arises in this way as a 
reduct of a first-order model, and this point of view will help later to show that the 
consequence relation for Wk is recursively enumerable. 

THEOREM 6. hWk q$ if and only if hMon q$. In other words, the weak structures 
satisfy exactly the standard identities. 

This theorem actually follows from the results in [9], which show that in fact least 
pre-fixed points are not necessary: least fixed points for every system of equations 
plus the Scott-Bekie law imply all standard identities. But the following proof for 
just Theorem 6 is much shorter and more direct. 

PROOF. The "only if" direction is obvious. For the other direction, it suffices by 
Corollary 4 to check the soundness of the proof system K. 

The standard proofs of soundness for rules (L1-7) and (R1-3) only use the 
leastness of the (pre-)fixed points for a system of equations, and hence hold for 
weak structures. The Part Replacement rule is trivial because weak structures 
are extensional and identical functions have identical least prefixed points. The 
Permutation identity is also easy; the order of a sequence of functions cannot 
affect their least prefixed points, either. Only the Alphabetic Identification identity 
remains to be checked. 

Recall that the Alphabetic Identification axiom scheme says that two terms A and 
B are equal if 

A-xa where {x = Al,... ,xn = An} and 

B Yb where {yl = Bl,...yn1 = Bn?}, 

and there is a relation between the disjoint sets of variables {x1,... ,xn} and 
{y,... , ym} such that Xa Yb and Ai _ Bj whenever xi yj. 

One can simplify the relation - allowed in Alphabetic Identification in two ways. 
First, any variable xi not related to anything can be eliminated from A using only 
the Head (Ri) and Scott-Bekie (R2) axioms. Second, any relation decomposes as 
a many-one relation followed by a one-many relation. Thus,. it suffices just to allow 

to relate each xi to exactly one yj. 
An example may make this second simplification clearer. Alphabetic Identifi- 

cation as stated above shows (in a single step) that the following two terms are 
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equal: 

Xl where {x = (X2, X3), X2 f (X2, X3), X3 g(X, X2)} and 

Z2where{ZI (Z2, Z3), Z2 =f (z, 3), Z3 g(Z2, Z2)}, 

by relating xl , zj, xl - Z2, X2 - Z, X2 - Z2, and X3 - Z3. However, the reduced 
form of Alphabetic Identification can show them both to equal 

y where {y = f (y, y'), y = g(y, y)} 

using relations that associate each xi or z1 to one of y or y' but not both. (Specifi- 
cally, x1 - y, x2 - Y, X3- y', and similarly for the z;.) 

For notational convenience, first consider the case of only one recursion variable 
in B, so that every xi is related to this one variable y. Then there is a term 
C(zI, . . , z, zI ) so that B y where {y = C(y, y,... , y, wzI)} and A has the form 

xa where {. , xi = C(x(i,l), X(i,2), ... I, x(i) w), . . . 

where 11 is some map from {1 ..n}x {1...} to {1 ... n}. 
Let f: Dlk -, D be the denotation of C (Zi,. . ., zI, w) in some weak interpre- 

tation. By definition of a weak interpretation, there is a least prefixed point y (wz) 
satisfying 9 f (y, y,... , 9, w ) as well as least prefixed points xi (wz) satisfying 

(7) ^1 f (kr(l 1), Xr(1,2), kir(ll), 7),... n f (kir(n,i), 7r(n,2) .. ., X(nj), w). 

Since the index a may be anything between 1 and n, the soundness of Alphabetic 
Identification amounts to showing that all of the xi are equal to jy. 

Clearly the n-tuple y, y,... , y satisfies the system defining the xi, so by the latter's 
leastness, each xi (w-) < 9 (w ) for all wz. If all of the xk were equal to each other, the 
same argument in reverse would show that they are greater than y. A priori, the xi 
might be different, but they do satisfy a "symmetrized" version of the system (7), 
which will allow the same conclusion. 

For any sequence u = (u1, . . ., un) of n indices from 1 to n, let 7t* (u, j) denote 
the sequence (r(u, Ij),... I, E(un, j)). Pick a collection of fresh variables xu where 
u ranges over all such sequences. Now consider the longer term 

(8) X(l,2...,n) where {.I. =, xi C(xr*(ul),... , (xj*(Ul), *), }, 

in which the equations inside of where range over all sequences u. These equations 
of course lead to least prefixed points xu (w ), which satisfy 

(9) XU =f (xr* (u, 1), *** x~r*(U,I) , W) 

for each u. Now, for constant sequences (i,.. ., i), written (i) for brevity, we have 
r*(( j) = (7r(i, j)). Hence, the entire original system (7) is reproduced as the 

portion of (8) with constant sequences for indices, and as a result k(1) =i for each 
i. 

Exploiting the symmetry of (8) will lead to the desired conclusion. Let functions 
p: ...,.. , n} - {1,... , n} act on sequences as follows: 

P(Uh ,. Un) = (UP,(I), * * * , Up9(n)). 

Under this action, 7t* (pu, j) = p* (u, j). This fact means that setting each xu to 

XpU leads to another solution of the equations in (8). 
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Thus, the leastness of the xu shows that for each u and p, Xu < Ecu. In 
particular, let t = (1, 2,... , n) be the sequence containing every index in order. 
Then at < x*(tj) for each j (using the maps t(., j) for p), and ^t < x(i) = xi 
for each i (using constant maps). So ht is a common lower bound for all of the 
solutions to the original system (7). 

Finally, these properties imply 

f (^t(W~ Xt), * * * Xt(W, < f (Xr*t)(n 7r *(t,2)(n * r * Xr(o~)(Wn 

=t t(W)- 

(The equality comes from (9).) Leastness of y yields that y (w-) < kt (w-) < xi (0), 
so each xi = as desired. 

If there is more than one recursion variable in the term B, the proof proceeds 
similarly. For example, we need to show that the denotation of 

xl where {xI = f (xI, X3), X2 = f (XI, X4), X3 g(X2, X4), X4 = g(XI, X4)} 

is equal in every weak interpretation to that of 

yl where {YI = f (YI, Y4), Y4 g(YI, Y4)}- 

Here, the relation associates xl and x2 to yi and X3 and X4 to y4. There- 
fore, the "symmetrized" term corresponding to (8) would have fresh variables 
X(I 1), X(i2), X(21), X(22) and X(33), X(34), X(43), X(44). Only maps which rearrange in- 
dices of variables corresponding by -, to the same yj are used. Thus in this example, 
there are essentially two copies of the above proof going on in parallel, one to show 
that Xl and x2 both equal 5'l, and the other to show that X and X4 both equal ^4. 

In general, there would be m copies of the proof going on, one among each set of 
variables associated to the same yp. H 

3.2. Subclasses of Cont. The result of this section illustrates the fact that it is 
possible to restrict to small classes of posets without making any additional identities 
valid. In other words, it is not necessary to have "much room" in the poset to falsify 
a non-standard identity, just freedom in choosing the monotone (continuous) maps 
used in the FLRo structure. 

Let 9 denote the class of continuous FLRo structures whose underlying partially 
ordered set is of the form (Pow(A), C) for some set A. Let Strm denote the class of 
continuous structures whose underlying poset is str(A) for some set A, and Strma 
be the structures on str({a }). Similarly, let Lin be the continuous structures on 
linear orders, and FLin be the structures onfinite linear orders. Finally, let W,,+i 
be the continuous structures on the single poset o + 1 with its usual (ordinal) order. 

THEOREM 7. The valid identities for all of the following classes of structures are 
exactly the standard identities: Cont, 9, Strm, Strma, Lin, FLin, and Wi,+* . 

PROOF There is nothing new to prove for Cont, and all of the others are sub- 
classes of Cont so certainly the standard identities hold in them. We need to verify 
that no additional identities hold. 

For 9, it suffices to find a reasonably free structure in this class for any signature 
-c. In fact, since any formula only contains finitely many symbols, it is enough to 
consider finite -c. Choose an injective pairing (, ) on the natural numbers, and an 
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invective map 1: -r -- N. Consider the standard denotation map A on (Pow(N), C) 
produced by assigning the following (continuous) function to the symbol f: 

fA(A1,. .., A,?) = {(0, (f))} U { (i, a) I1 < i < n and a E A }. 
Check that A satisfies the conditions for being reasonably free. 

Next, we attack FLin and Lin. As before, fix a finite signature z, and choose an 
arbitrary linear order on -c. This choice induces a linear "breadth-first lexicographic" 
ordering -- on -1TR as follows: For any two distinct trees u and t, find the shortest, 
lexicographically first sequence a E N* such that t (a) 54 u (a). If t (a) is undefined, 
then t -< u (and vice versa). Otherwise, both t (a) and u (a) are defined, so use the 
order on z to choose which of t and u is -<-smaller. 

The order -< refines the ordinary subtree ordering < on z ITR and in fact pre- 
serves the sups of <-chains. Furthermore, the interpretation of each function 
symbol as defined in the description of - ITR is monotone in -< as well as <. Thus, 
the least fixed points of a system of equations in -1TR are also the least -<-fixed 
points. This property holds even in the strong sense: if f is a unary function with 
<, -<-least fixed point x, for example, then 

(10) f (y) < y implies x < y. 

Suppose that A and B are FLRo expressions in simplified form which have 
different denotations on -1TR; we construct a monotone structure on a finite 
linear order in which A and B also have different denotations, completing the proof 
for FLin and hence for Lin. We may write 

A -Xa where {xl = f I(X),...,x11 f,7 (X)} 

B Ybwhere fy1 = g (X),,y,in = X) 

The two systems of equations inside "where" have least fixed points ki and jj in 
-1TR, with xc, 4 Yb by hypothesis. 

Now consider the finite linear order 

L= ({I}U{xi I 1 < i < n}U 1 < j < m},<). 

Define a monotone function f L corresponding to each function symbol f E z as 
follows: 

(l ) if L(ZI,, -,Zk) = inf fV 1E LI | 1(, ,Zk) -'</ - 

Here f is the function corresponding to f in -1TR; and the inf on the right hand 
side is taken to be the maximum element of L if the given set is empty. 

Let xi and yj be the -<-least fixed points in L of the same systems of equations, 
from A and B. Certainly the old fixed points xi and jj still satisfy these equations 
in L, soXi ,< Xi and yj < y 

On the other hand, by definition and monotonicity of f, 

Xi i Xio I .. I Xi ) t i o(i , n X, ) 

Since xi c L, the inf on the right of ( 11) will be non-empty, meaning that 

f i Lx0'' i/ (_X-fP i0X, Xi, ) - 

This last relationship (which holds for all i < n) yields xi j< xi because of the strong 
---leastness of the xi in -I1TR, as in equation (10). 
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FIGURE 1. The complete poset Y. 

The same properties hold for the yj, meaning that A and B have the same 
denotations in L as they do in -ITR. In particular, A and B still have distinct 
denotations, as desired. 

Any monotone function on a finite linear order can obviously be extended to one 
on o + 1 with the "same" least fixed point, so the result extends to SW,,+i. A similar 
tactic serves for Strm, and hence Strm. -1 

?4. Consequence relations. Questions concerning FLRO consequence relations 
(with hypotheses) seem in general much more difficult than questions about valid 
identities. For example, no complete axiomatization for the consequence relation 
on any natural class of FLRo structures is known, other than the following which 
is obtained by a standard "term-model"-type construction. 

THEOREM 8. Let X be the collection of all normal FLRo structures. Then F K, 5- 

if and only if F[-w q. 

Moreover, the consequence relation F Kd q6 depends very sensitively on the 
collection of models -S. This is shown very extensively by the large list of distinct 
quasi-varieties of iteration theories examined in [3]. (A quasi-variety of iteration 
theories corresponds to the collection of FLRo structures in which some list of 
consequences holds.) We highlight here just the situation for our three basic classes. 

THEOREM 9. 

Fkwko =FMon =F " =Cont 0 

but neither of the reverse implications hold. 

PROOF. Since Cont C Mon C Wk, the implications are obvious. The first 
implication cannot be reversed because the Recursion Inference rule is not sound 
for weak structures, as shown in [9], Theorem 13.2. The non-reversibility of the 
second implication actually follows from Theorem 13.32 in the same paper, but the 
following argument is more direct and provides a concrete countermodel. 
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For any unary function symbols f and g, 

(12) f f () g(),VX (f (g(X)) = g(f (X)))} k=Cont 

x where {x = f (x)} = x where {x = g(x)}. 

(This consequence holds because under the hypotheses, 

f (f (I)) = f (g(I)) = g(f (1)) = g(g(I)) 

and similarly fn(l I) = gn(I ); and the fixed points in the conclusion are just the 
suprema of these iterates.) 

This consequence (12) does not hold for k=Mon, however. Let Y be the poset 
pictured in Figure 1, consisting of a copy of o with a diamond at the top. Let 1 and 
r be the monotone functions on Y defined by: 

* I(n) r(n) = n + 1 for n c co. 
* 1(O) L, r(w) = R. 
* I(L) L, r(R) = R, I(R) = r(L) = T. 
* I(T) r(T) = T. 
Check that 1 and r satisfy the hypotheses of consequence (12), but not the 

conclusion. -1 

We believe that a complete axiomatization of any one of these consequence 
relations would provide deep insight into the nature of (least-fixed-point) recursion. 
The next two theorems show that such an axiomatization is at least feasible for 
kWk, but impossible for kCont. The former fact is one of the main motivations for 
introducing the weak interpretations. 

THEOREM 10. The relation (forfinite sets offormulas F andformulas q) of F l=Wk 

4 is recursively enumerable. 

SKETCH OF PROOF. Associate effectively with each F and q6 first order sentences 
F*, q0* in an expanded signature such that F k=Wk q6 is equivalent to F* W 0*, i.e., 
ordinary predicate logic consequence. Then appeal to the Completeness Theorem 
of Predicate Logic. 

In slightly more detail, first add a binary predicate < and the set of sentences 
which insure that < is a partial order with a minimum element, that all the function 
symbols have monotone interpretations, and that all systems of equations of FLRO 
expressions have least fixed points. This is an infinite but r.e. set of sentences. Then, 
translate all the formulas in F and q6 by the sentences which say that the least-fixed- 
points of the systems on both sides in each identity actually yield the same value. 
The equivalence of F k=Wk q6 and F* W q0* is then immediate and the fact that F* is 
infinite poses no problem, since it is r.e. H 

Say that a term or formula of FLRO is explicit if it makes no use of where, and 
semi-explicit if where is only present in occurrences of I. The consequence relation 
for continuous monotone structures is undecidable, even for hypotheses that only 
use recursion trivially: 

THEOREM I 1. The relation F k=Cont ofor F restricted to afinite set of semi-explicit 
identities is complete HO. 
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PROOF. First we sketch a proof that F k=Cont q6 is in HW. Fix the signature -T. Let 
<r be the smallest preorder on the semi-explicit terms (open and closed) of FLRo (z) 
such that every function symbol is <?-monotone, I is the <,--least element, and 
such that A <? B and B <? A for each (A = B) E F. Let =- be the induced 
equivalence relation. Both of these relations are r.e., since they contain only the 
pairs forced into them by the above conditions. 

Now take the collection of closed terms and mod out by =-, so that <,- be- 
comes a partial order. Further, take the free directed-complete poset F over the 
resulting partial order, and extend the interpretations of the function symbols to 
F by continuity. This construction produces a continuous, monotone structure for 
the signature z which satisfies F. One can show that for closed terms E and M, 
F kCcont E = M if and only if E = M holds in F. 

To decide whether this happens in a FIH way, first put E and M in simplified 
form by the Simplification Lemma. Then E and M each have a natural sequence 
of iterates E(i) and MMi) for i E N. Each iterate is a semi-explicit term, with E(?), 
for example, equal to the head term E0 of E with I substituted for each recursion 
variable. It is not difficult to show that E = M holds in F if and only if 

Vi Vj :k 31 (E (') <, M(k) and M(j) <r- E(l)). 

For completeness, choose a recursive function g such that Vx:y g (x, y, I) 0 is 
a complete FIH relation on z. We will construct a finite set of semi-explicit identities 
F and a recursive sequence of identities 0,, such that 

Vx :y g (x, y, zV) = < - r Fk~C0nt q2. 

The universe of the intended model for F consists of the union of three separate 
posets with their bottom elements identified: the flat poset on N, the ordinal o + 1, 
and the poset of ternary partial functions on N with its usual order. We put a 
number of function symbols into the signature and identities into F to enforce key 
properties of these components. First, add symbols 0, S, P, and Z for the usual 0, 
successor, predecessor, and characteristic function of {0} on N, where 0 is used for 
"true" and 1 -S(0) for "false." In the intended model, these functions take on 
the value I when their argument is not in N. Similarly, add a ternary conditional 
symbol if * then * else .. Let F contain the following identities: 

(1) Z(0) 0, Z(1) 1, Z(SSx) = Z(Sx), Z(i) =. 
(2) S(I) I , P(0) 0, P(1) = 0, P(SSx) = Sx. 
(3) if0thenx elsey = x, if lthenx elsey = y, if thenx else =I. 

Let A, be the usual numeral for the natural number n, i.e., S applied n times to 
0. The above identities guarantee 

LEMMA 12. Let D = (O, A) be any FLRO structure satisfying F. If any two terms 
have distinct denotations, then the denotations of the A,, are all distinct from each 
other and I and the map n | * AQ A,, is an isomorphism of the structure of the natural 
numbers (N, 0, S, P, Z). 

Turning next to the copy of o + 1, add a binary function symbol inc intended to 
stand for the function 

inc +1, b 
a 

oerw =io ors 
b 

incoe b)= 
a+ I otherwise, 
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for a an ordinal in o + 1. Also add a function symbol W for the natural map from 
N to o taking n to the nth ordinal. Add to F the equations 

inc(x, I) = x, W (O) = I, W (Sx) inc( W (x), 0). 

Write Wo, to abbreviate the term w where {w inc(w,0)}. These identities 
guarantee that in any continuous structure, the denotation of W(,, will be the sup of 
the W(A,,), i.e., it acts as a numeral for c. Note that these equations do not enforce 
that the copy of o + 1 is standard, as the previous group did for N -there may be 
non-trivial models of F in which W[N] is a finite linear order. 

The final component of the intended model is handled by adding a function 
symbol ap of four arguments, to denote the application of a ternary partial function 
to three natural numbers. The only identities F will need for ap enforce that it is 
strict in each of its arguments: 

ap(I, x, y, z) I, ap(w, I, y, ) Il, etc. 

Returning to the original recursive function g selected, choose a system of 
Herbrand-G6del-Kleene equations which prove that g is recursive. Add the neces- 
sary function symbols to the signature and the exact system of equations to F. In 
the intended model, these function symbols denote the (partial) recursive functions 
(on the N-component) that they define, and take the value I for arguments not in 
N. Since the rules of the H-G-K system are substitution and replacement which 
are valid in our proof system, and the intended model satisfies F, we have 

(13) g(l, n, m) = w r F - g(Al, Ann iA7) = A, 

Now we are ready to define the FLRo expressions which will capture the relation 
Vx By g(x, y, z) = 0. Add three more symbols c, d, and e to the signature. For c, 
add the identity 

ap(c(v), x, y, z) = if Z(g(x, y, z)) then 0 else ap(v, x, Sy, z) 

to F. This identity makes c an operator on ternary partial functions. Intuitively, 
the fixed point of c will be a partial function v3 (x, y, z) satisfying 

v (xyz =1 {v(x y + 1 otherwise. 

In other words, ap(v, x, 0, z) where {v = c(v)} will be 0 (true) if there is a y such 
that g (x, y, z) = 0 and I otherwise. 

Next, add the following equation defining d to F: 

ap(d(u,v),x,0,Z) = 

if ap(v, x, 0, z) then (if Zx then 0 else ap(u, Px, 0, z))else 1. 

Similarly to c, 

ap(u,x,0,z) where {u = d(u,v),v c(v)} 

will be 0 if for each x' < x there exists y s.t. g(x', y, z) = 0 and I otherwise. (Note 
that the "1" in the final else clause can never be reached, since vi(x, 0, z) is either 0 
or I.) 



470 HURKENS, McARTHUR, MOSCHOVAKIS, MOSS, AND WHITNEY 

Finally, add the following equations for e: 

e(J(O),u,z) = I 

e( W(Sn), u, Z) = inc(e( W(n), u, z), ap(u, n, 0, z)). 

We will of course look at what e does in a context where u is the fixed point 
u = d(u, v?). The idea here is that we are defining e "by induction" on the finite 
ordinals so that for fixed z its values will be unbounded if and only if for every n, 
By g(n, y, Z) = 0. In other words, let O.- be the formula 

e(W0,,, ,A )where{u=d(u,v),v-c(v)} = W-O, 

and finish off the proof with: 

CLAIM. For every natural number z, 

Vx 3yg(x,y,l 7) = 0 < F ~Cont q.- 

One direction of the claim is easy: if 3xVy g(x, y, z) :t 0, then the intended 
model does not satisfy O. even though it does satisfy F. On the intended model, 
tU(n,0,z) = I for n greater than the offending x, so e(a',, z) =e(a,zu,z) for 
ordinals a greater than x, so e (c, z2, z) is the xth ordinal and not equal to c. 

On the other hand, suppose that in fact Vx:y g(x, y, z) = 0. On a non-trivial 
model of F, the numerals A,, are isomorphic to the natural numbers and g com- 
putes correctly, so in fact for every x there is a y such that g(AX, AV,, A:) 
0. Let vo - ,vI = c(I),v2 = c(v1),... be the iterates for the fixed point 
sup, v' = v= c (vi). The equation for c in F means ap(c (vO), Ax, A., A:) = 0, so 
in turn ap(c(vA), A^j,- A 1), A:) = 0. By induction and continuity of ap, we get 
ap(v, Ax, 0, A:) 0 for each x. Similarly, using the equation for d and induction, 
we calculate that ap(u, A,, 0, A ) = 0 for all x. 

Therefore, by induction on n, e ( W (n), t^, A ) = W (n) since 

e(W(Sn), u, A-)= inc( W(n), 0)= W(Sn) 

by the equations for e, inc, and W. As mentioned above, the term W,, denotes 
the sup of the W (n) in every model of F. Hence the continuity of e means that 
e (W,,,, a, A,) = W,, as desired. -A 

The complexity of the general consequence relation F l=Cont / for arbitrary finite 
sets of identities F is much greater; it appears to be at least A',, but we have not 
pinned this down precisely. In any case, the next natural question to ask is 

QUESTION 13. What is the degree of unsolvability of F k=Mon 5, for arbitrary or 
for explicit F? Is either re.? 

Because of Theorem 11, the provability relation F F- axiomatized in Table 1 is 
clearly incomplete for k=Cont. However, it's also incomplete for kMon: 

PROPOSITION 14. The consequence 

(14) f (I) = 11= x where {x = f (x)} I 

holds in Wk (and hence Mon and Cont), but is not provable. 

This follows from Section 5.6 of [3], but it is not difficult to see directly; the 
smallest countermodel is an intensional FLRO structure with just two individuals, 
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I and T, and just two unary transformations, which both fix both individuals but 
which are assigned distinct fixed points. 

Although we have no real evidence that this fact captures the only obstacle to 
completeness, it is nevertheless tempting to ask 

QUESTION 15. Augment F- with an axiom scheme similar to (14) for all 'finitely 
terminating" recursions.3 Is the resulting proof system complete for k=Mn? 

Looked at another way, the incompleteness could result from the current axiom- 
atization being insufficient to handle recursion in the hypotheses. 

QUESTION 16. Restrict F to be afinite set of explicit identities. In this case, does 
F =MOn q imply that F - q? 

Of course, completely open but perhaps more fruitful in the light of the recursive 
enumerability of Theorem 10 is: 

QUESTION 17. Find a useful, complete axiomatization for kWk 4 

One attraction of this problem is that a solution provides a sound, albeit incom- 
plete, axiomatization for =Mon. Furthermore, adding the Recursion Inference rule 
to such a system would give a reasonable candidate for a complete proof system for 
FMon - 

?5. Adding the conditional. The proof of Theorem 11 made heavy use of a natural 
conditional construct, which in fact the full language FLR of [18, 17] includes 
as a logical symbol, along with parameter passing. In this section, we add this 
conditional to FLRO, and show that decidability and completeness still hold for 
this larger fragment of FLR. Section 12.4 of [1] is similar in flavor to this section; 
the primary difference seems to be that [1] is concerned with a finite list of specific 
predicates, whereas we wish to axiomatize here a general construct in which any 
FLRo expression can be substituted as the condition. 

For a signature T, the terms E of the Equational Logic of Recursion ELR(T) are 
given by 

E:= ff I tt I x I f (E1 ... I En) I Eo where {x = E} | if Eo then El else E2 

ff and tt are new logical constant symbols, and if * then else is a new 
logical ternary symbol; all other syntactic notions are the same for ELR as FLRo. 
An ELR(T) structure is just an FLRo(T U {ff, tt, if * then else 1 }) structure 
((a, A) satisfying 

(1) A() ff, A() tt, and A() I are all distinct. 
(2) A(x) (if tt thenEl else E2) A(x)El for all terms El and E2 and ap- 

propriate lists x. 
(3) Similarly, A(x) (if ff then El else E2) = A(x) E2. 
(4) A(x) (if I then El else E2) = A(x) I, i.e., the conditional is strict in its 

first argument. 

31t turns out it is only necessary to axiomatize explicitly the recursions which terminate at stage two; 
similar properties for recursions that close at later finite stages then become provable. 

4This question is intentionally imprecise. The stipulation "useful" is included to avoid trivial axiom- 
atizations supplied by the proof of Theorem 10 together with the Craig Lemma, which states that every 
r.e. set of sentences closed under (predicate) logical consequence is the set of consequences of a primitive 
recursive set of sentences. 
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Note that no assumption is placed on if E then * else- in case E does not 
have the same value as ff, tt, or I. An ELR structure is called monotone if it is 
monotone as an FLRo structure. 

For an example of a monotone structure, consider the poset D = N N of 
partial functions on the natural numbers with the usual ordering. The signature 
and the monotone functions interpreting the function symbols can be arbitrary. 
I, of course, denotes the totally undefined function, the least element of D. For 
consistency with the proof of Theorem 11, interpret ff and tt as the constant 
functions equal to 1 and 0 on all natural numbers, respectively. Finally, interpret 
if then * else- by the monotone operation on D which takes p, q, and r to the 
partial function c defined by 

( q(n) if p(n) = 0, 
c(n) r(n) if p(n) > 0, 

undefined if p(n) is undefined. 

It is straightforward to check that the conditions for an ELR structure are satisfied. 
This is the "usual" conditional, subject to our convention for true and false: for 
example, if Z denotes the characteristic function of {0} as above, then the closed 
term 

if Z then El else E2 

denotes the function whose value at 0 is that of E1 and whose value everywhere else 
is equal to E2. As before, ELR is a weak language for talking about the properties 
of D and this conditional, since it cannot refer to the natural numbers themselves. 

Nevertheless, with an appropriate modest signature interpreted by the usual initial 
functions and closure operations, the closed terms of ELR will denote every partial 
recursive function on N. Extending the above example, suppose that pr(-, .) denotes 
the pairing operation which takes p and q to the function (n, m) |-4 (p(n), q(m)) 
(relative to some standard pairing function (., ))). We need constant symbols for the 
two component functions (projections) as well: fst and sec. with fstA: (n, m) H-4 n 
and similarly for secA. Let id, Z, S and P be constant symbols for the usual identity, 
zero, successor and predecessor functions, and let apI (-, ) and ap2(,, ,) denote 
unary and binary application of one partial function to others: (ap2)A(p, q, r) is the 
function n |-4 p((q(n), r(n))). Then the following term defines the ordinary sum of 
two natural numbers, i.e., the function (n, m) |-4 n + m: 

x where {x = if api(Z, sec) then fst else api(S,ap2(x, fst, ap, (P, sec) )}. 

The corresponding, more apt, term in FLR would simply be 

s where {s(n, m) = if m = then n else S(s(n, P(m))}. 

We conclude with the promised completeness and decidability result for ELR. 
An identity between two terms of ELR is cond-standard if it holds in all monotone 
interpretations. Define the provability relation F K 0 by the same induction as F-, 
except replace the Recursion Inference rule with the Bottom Recursion rule (below), 
and add the following axioms: 

(Ci) F if ttthen Elelse E2 = E1. 

(C2) F Kc if ff then El else E2 = E2. 

(C3) F if I then El else E2 =. 
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(R'4) (Bottom Recursion rule) Suppose we are given F and ELR terms 

A AO where. {x = Al, . , = An} and 

B _Bo where {yi = Bl, . .l, Y? = Bill I 

where no xi occurs in B, no yX occurs in A, and none of the variables xi or yX occur 
free in F. Suppose also that there is a set of equations E each of the form xi = yj 
xi = I or yj = I such that 

* F, Kc Ao = Bo, 
* F, K Ai = Bj for each (xi yj) cEA 
* F, K A i =Ifor each (xi I) E, and 
* Fc Bj = Iforeach(yj Ei) E . 

Then Fc A = B. 
The soundness of Kc for monotone structures of ELR is another exercise in least- 

fixed-point recursion, similar to Proposition 1 (Soundness of F-). Also note that Kc 
is strictly stronger than F-: if F F- q, then F KC q. 

THEOREM 18 (Completeness/Decidability for ELR). An identity A = B is cond- 
standard if and only if Kc A = B. Moreover, this common validity is decidable. 

By the Simplification Lemma 3 for FLRO, every closed ELR term A is provably 
equal to A' Xa where {xl = A1,... Xn = A} where each Ai is either xi, 
f (variables), if, tt, or if xj then Xk else xi . We need to strengthen this simplified 
form. Call each variable xi a bottom, functional, true, false, or conditional variable, 
respectively, according to which case Ai corresponds to. In the case of a conditional 
variable xi, the variable x; is called the immediate specifier of xi. Say that the 
variable xrn is a specifier of xi if it is in the transitive closure of the "immediate 
specifier" relation from xi. Thus, there is a natural sequence xJ, xI j2, ... , xn of 
specifiers of xi, with each variable being the immediate specifier of the preceding 
one. This sequence of course ends if a non-conditional variable is reached. So every 
conditional variable has at most one non-conditional specifier. Finally, say that a 
term A' is unconditionally simple if every conditional variable in A' has a functional 
specifier. 

LEMMA 19 (Unconditional Simplification). Every closed term of ELR is provably 
equivalent to an unconditionally simple one. 

PROOF. First, put the closed term into simplified form A' as just described. Next, 
eliminate any conditional variable xi with no non-conditional specifier as follows. 
Since there are only finitely many variables, the only way this can happen is for some 
variable to be a specifier of itself. Suppose it is xi (the order of the equations in the 
where clause is irrelevant), so that there is a sequence of variables XI, X2, .. ., Xk, 
with each variable the immediate specifier of the preceding one and xl the immediate 
specifier of Xk. Then all of the variables in this loop will come out to be I. More 
technically, the Bottom Recursion rule and axiom (C3) for conditionals shows that 
A' is equal to 

ya where {y1Y -Y1,Y2 = Y2, ,Yk = Yk,Yk+I = Ak+I(Y),.**, = An(Y)} 

The set of equations E used in the bottom recursion rule consists of x; = yj for 
each j < n together with x; = I and yj = I for each j < k. 
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Finally, repeatedly use conditional axioms (C1-3) to eliminate conditional vari- 
ables whose immediate specifier is a true, false, or bottom variable, respectively. - 

Next, adjust the notion of a reasonably free structure: (a?, A) is cond-free if the 
following properties hold for arbitrary distinct function symbols f and g: 

(1) f is injective, and its image does not contain AQ 1, A() ff, or A() tt. 
(2) f and 

- 
have disjoint images. 

(3) The extension of the conditional AQ if a then b else c is invective except 
for a equal to A()O ,A() ff, or A() tt. 

(4) The image of f is disjoint from 

{ A() if a then b else c a {AO 1, AO ff, AO tt}} . 

Furthermore, this latter set does not contain AQ 1, A() ff, or AO tt. 

LEMMA 20. Suppose A' -X where x = Al is unconditionally simple. For each 
variable xi in A', let xi be the denotation AO xi where x = Al in a cond-free ELR 
structure. Then xi equals AO 1, AO ff, or AQ tt if and only if xi is a bottom, false, 
or true variable, respectively. 

PROOF. The "if" direction is trivial, of course; and for functional variables, the 
"only if" direction is easy as well: If xi is functional, then by the Fixed Point axiom 
(R3), 

xi = f (xJ1, .., x ~) where {x = Al. 

But the extension of each function symbol does not contain 0, 1, or I in its image. 
The argument for conditional variables is similar, but goes by induction: if x; 

is the immediate specifier of xi and x; is not 0, 1, or 1, then xi is not 0, I or I 
either. The base case is provided by the fact that every conditional variable has a 
functional specifier, since A' is in unconditionally simple form. -A 

This collection of lemmas ensures that the same outline that worked for FLRo 
goes through for the extended language. 

PROOF OF COMPLETENESS/DECIDABILITY FOR ELR. There is essentially nothing 
left to do, except show that there is a cond-free monotone structure. Given A = B 
which holds in such a model, convert both sides to A' and B' in unconditionally 
simple form, an effective operation. Apply the same algorithm for constructing 
an application of the Recursion Inference rule as used for FLRo (considering if 
then else to be an ordinary function symbol). The immediately preceding lemma 
together with the requirements for being cond-free guarantees that the algorithm 
will succeed if A and B really do have the same denotation (and fail otherwise, 
completing the decision procedure). 

Finally, to build a cond-free monotone structure for ELR(T), choose a reasonably 
free structure for FLRo (r U {F. T, C }) where F and T are new constant symbols 
(whose values will interpret ff and tt), and C is a new ternary function symbol. 
Let I be the least element of the complete poset the reasonably free interpretation 
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is based on. Now interpret the conditional construction by 

Iif a = 
b if a = l 

if a then b else c - if a = T 
Ic~abc if a F 
C (a, b, c) otherwise. 

Check that this defines a monotone function and that the conditions for a cond-free 
structure are satisfied. -1 

Appendix. Equivalence between FLRo structures and iteration theories. This ap- 
pendix is devoted to an outline of the proof of Theorem 5 from Section 2, which 
states that the categories of FLRo structures and iteration theories (with the cor- 
responding appropriate notions of homomorphisms) are equivalent. Most of the 
work of this proof consists in building the functors in each direction that effect the 
equivalence. 

5.1. From FLRo structures to iteration theories. Given a normal FLRo structure 
R = (eD, A), build an iteration theory TR as follows: 

(1) The set of morphisms in TR from n to k is TR(n, k) = ((Dk)n- 
Note: we take (4k)1 = Fk here, and (Lk)0 to be some singleton set {*k}- 

(2) id,]= (A(,V)vI, . .. ,A(V)Vn ) . 
(3) For 1 < i < n, in = A(vI,... Vn)vi 
(4) Given f= (fi,... ,fn): n -* m and g = (g9,... ,gn): m -* k, we set 

f . g: n - k to be the n-tuple whose ith entry is 

(15) A(vI, . . ,vk)f i(gl (v), . . gm (v) 

(When n 0, f = *n and we set f . g = *k. We'll ignore the case of n = 0 in what 
follows, however.) 

(5) Givenf = (fi,... ,fn): n - n+p, wesetft: n - p tobethen-tuple 
whose ith entry is 

(16) A(y,... ,yP) xi where {xI = f I (n 5 Xn = Ofn(sy)}n ) 

Here xi = vl, . .. ., x,1 = Vn, 5 Y = Vnl+1 . ..., 5yp = Vn+p . 

Essentially, the logical rules (L1-7) of Table 1 guarantee that To is a category 
under this composition. One must show that the iteration theory axioms of Table 2 
hold in the resulting theory To. The two sides of the Parameter Identity translate to 
syntactically identical tuples of FLRo expressions, and so are equal. The remaining 
axioms correspond as in the table above. 

So far, we have not considered maps between FLRo structures. However, there is a 
natural notion of (FLRO) homomorphism: Given two FLRo structures P = (a?, Ap) 
and Q = (T, AQ), a homomorphism from P to Q is an arity-preserving map a 

from C1 to T which respects the denotation maps, as follows: a can be extended 
by substitution (on the function symbols, which are just the elements of (D, since 
we are considering structures for the empty signature) to a map from FLRO ((D) to 
FLRo (T). This extended map must satisfy 

ca(Ap(X) E) = AQ(X) (a (E)) 
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for all terms E of FLRo ((a). This requirement guarantees that a preserves compo- 
sition and recursion, much the way that a homomorphism of rings must preserve 
addition and multiplication. 

The correspondence R I-4 TR now extends to a functor on the respective cat- 
egories of FLRo structures and iteration theories. Any FLRo homomorphism 
C: P -* Q as above determines a theory morphism T,: Tp -) TQ, as follows. 
The object map of T, is the identity, the map on morphisms is just C, and the 
A-preserving property of a ensures that T. preserves the theory operations, the 
t-operation and the distinguished morphisms. 

5.2. From iteration theories to FLRo structures. In the other direction, any iter- 
ation theory T gives rise to an FLRo structure ((a, A) = ((T, AT) in the following 
way: 

*?(isgivenby (D = T(1,n). 
*A(xl,... ,x)xi =in 

* A(xl,.. , x111)f (El, . . ., E,]) = f ( A(X`)El,.., A(x-)En) 
* A(xl,... , x,) Eo where {y = E1,... ,IYii = En} is 

A(- - 
xE0 ((~A(y,' x)El, .I. A ( - X-)En) t, Win~) 

We must make a provision here to cover the case when the sequence y', x has 
repeated elements. We deal with this case in the following way: Let w1, ... ., Wk be 
the subsequence of x containing the variables which occur in y. Let Z be the sequence 
x with wi replaced by the ith variable (in the natural order) which is not among the 
xs or ys. Then y and z have no overlaps, and we set A(x) E0 where {y = E} to 

A(y-, zo)Eo ((~A(y, f)EI, I ,. Ay f) En) t, idp). 

As before, the iteration theory axioms ensure that the resulting structure actu- 
ally satisfies the standard identities. The details in this direction are somewhat 
trickier. The first critical lemma is that substitution in FLRo((DT) corresponds to 
composition in the original iteration theory T. 

LEMMA 21. Let E be a term whose free variables are among Yi, .. yn . If s is free 
for E, then 

AT(XI, vXnJE[s] = (AT(Y1,, Yn) E) ( AT(X) s(yl),.. , AT(X) S(YFn)) 

The compositionality conditions defining an FLRo structure and the logical laws 
(L1-7) just come from the fact that T is a category The Head axiom (RI) is trivial 
from the iteration theory point of view. The Scott-Bekic and Fixed Point axioms 
(R2,3) correspond as they did in the other direction. The Part Replacement rule 
corresponds to the simple fact that .t is well-defined. The Permutation Identity is 
a simple corollary of the Commutative identity. Finally, Alphabetic Identification 
also follows from the Commutative Identity (via its equivalent generalized form in 
Proposition 5.3.26 of [1]). By Corollary 4, the standard identities hold in ((FT, AT). 
Of course, the correspondence in this direction also extends to a functor in the 
natural way. 

These constructions supply most of the proof of the main theorem of the appen- 
dix. 
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PROOF OF THEOREM 5. So far we have shown how to take an iteration theory T 
and produce an FLRo structure ((DT, AT) (@D(T), A(T)) and also how to take 
an FLRO structure (a?, A) and produce an iteration theory T(oA) = T((D, A). 

We want to consider the composites of these functors, and show they are both 
naturally isomorphic to the identity functor. 

First, ((D(T(FD, A)), A(T((D, A))) = (F, A). This exact equality hinges on our 
identification of X1 with X in the definition of T((D, A); without that we would 
just have an isomorphism. Similarly, composition in this direction leaves FLRO- 
homomorphisms unchanged, so there is nothing to prove for naturality. 

Second, consider U = T(F(T), A(T)). Here, T U: The isomorphism takes a 
morphism f: n -* m of T to the tuple (1,, . f, . . ., nn f ) of elements of (D(T),.1 = 
T(1, in). (The morphism i,, is taken to the ith projection function on n-tuples.) 
Furthermore, the isomorphism T -- U is natural in T, essentially because U(1, m) 
is literally equal to T (1, m) for each in, and the T (1, m) together with the tupling 
operations ( ) determine T. -1 
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