
The Formal Language of Recursion
Author(s): Yiannis N. Moschovakis
Source: The Journal of Symbolic Logic, Vol. 54, No. 4 (Dec., 1989), pp. 1216-1252
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2274814
Accessed: 12/10/2008 23:57

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=asl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The
Journal of Symbolic Logic.

http://www.jstor.org

http://www.jstor.org/stable/2274814?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=asl

THE JOURNAL OF SYMBOLIC LoGic

Volume 54, Number 4, Dec. 1989

THE FORMAL LANGUAGE OF RECURSION

YIANNIS N. MOSCHOVAKIS 1'2

Contents

INTRODUCTION

1. BASIC DEFINITIONS

lA. Notation.
lB. Types and pure objects.
IC. The syntax of FLR.
ID. Denotational semantics on functional structures.
1 E. Congruence and special terms.
I F. Recursive functionals.

2. REDUCTION IN FLR
2A. Introduction.
2B. The reduction calculus.
2C. Normal forms.
2D. Uniqueness of normal forms.
2E. Replacement results.

3. ALTERNATIVE DENOTATIONAL SEMANTICS

3A. Call-by-name recursion.
3B. States and functions with side effects.

INTRODUCTION

This is the first of a sequence of papers in which we will develop a foundation for
the theory of computation based on a precise, mathematical notion of abstract
algorithm. To understand the aim of this program, one should keep in mind clearly
the distinction between an algorithm and the object (typically a function) computed
by that algorithm. The theory of computable functions (on the integers and on
abstract structures) is obviously relevant to this work, but we will focus on making
rigorous and identifying the mathematical properties of the finer (intensional)
notion of algorithm.

Received April 14, 1988; revised September 1, 1988.

'During the preparation of this paper the author was partially supported by an NSF Grant.
21 thank the referee for the many errors found, and for numerous critical comments which prompted

me to simplify and clarify the text in several places.

? 1989, Association for Symbolic Logic

0022-481 2/89/5404-0006/$04.70

1216

THE FORMAL LANGUAGE OF RECURSION 1217

It is characteristic of this approach that we take recursion to be a fundamental
(primitive) process for constructing algorithms, not a derived notion which must be
reduced to others -e.g. iteration or application and abstraction, as in the classical A-
calculus. We will model algorithms by recursors, the set-theoretic objects one would
naturally choose to represent (syntactically described) recursive definitions. Explicit
and iterative algorithms are modelled by (appropriately degenerate) recursors.

The main technical tool we will use is the formal language of recursion, FLR, a
language of terms with two kinds of semantics: on each suitable structure, the de-
notation of a term t of FLR is a function, while the intension of t is a recursor (i.e. an
algorithm) which computes the denotation of t. FLR is meant to be intentionally
complete, in the sense that every (intuitively understood) "algorithm" should "be"
(faithfully modelled, in all its essential properties by) the intension of some term of
FLR on a suitably chosen structure.

In this paper we will define FLR and study its basic syntactic properties, specifi-
cally a calculus of reduction and equivalence for terms. Each term can be reduced to
another which is (formally) irreducible, by a sequence of applications of some simple
reduction rules, and the main technical result of the paper is the uniqueness (up to
congruence) of the resulting normal form of the term. Read as equivalences, the
reduction rules "axiomatize" the fundamental transformations of recursive definitions
which preserve the algorithm expressed by a term t; the normal form of t describes
then this algorithm directly and immediately in terms of the "givens" of the
structure. In programming terms, the reduction calculus for FLR formalizes
(faithful-algorithm preserving) compilation of programs, in contrast to reduction
in the A-calculus which formalizes computation of values.

In fact, the terms of FLR can be taken to denote quite general kinds of
"functions", which may depend on a state, for example, or have side effects; and we
can also understand the fundamental recursion construct in various ways-e.g. to
denote either "call by value" or "call by name" recursion. As a result, we can
interpret naturally in FLR most familiar programming languages, and then use such
interpretations to derive denotational and intensional (algorithmic) semantics for
programming languages. Without going into detail, we will supply sufficiently
many comments on this so that a reader familiar with the theory of programming
languages will see clearly how to interpret them in FLR.

In Part 3 we will provide some justification for the reduction calculus by showing
that it preserves the values of terms in the several distinct denotational semantics for
FLR to which we alluded above. In [Moschovakis alg] we develop the (more
important for our program) intensional semantics of FLR for structures with pure
recursors which model pure (side-effect-free) algorithms; and in a subsequent paper
of this sequence we will extend the theory to cover sequential side effects and
concurrent algorithms.

Many languages and specification systems syntactically similar to FLR have been
studied in the literature, beginning with the classical Herbrand-Gddel-Kleene
systems of equations [Kleene 1952] and including Pure Lisp [McCarthy 1960],
recursion schemes [Greibach 1975] and the CCS calculus of [Milner 1980]. FLR can
be viewed naturally as a variant of some of these and a second-order generalization
of the others, as its "function symbols" can take arbitrary "partial function

1218 YIANNIS N. MOSCHOVAKIS

variables" for arguments. Thus the main technical result of this paper can be viewed
as a traditional proof of the unique termination property for a reduction calculus on
a familiar language.

A preliminary version of this research was reported in [Moschovakis 1984],
which we will cite by the initials of its title ARFTA. That was a wide ranging report,
which discussed (with no proofs) several aspects and potential applications of the
theory. Some of the basic definitions were deliberately simplified in ARFTA for
purposes of exposition, and in addition the theory has been expanded and refined
considerably since ARFTA was written. The technical results of this paper can be
read independently of ARFTA, but we will often refer to that paper for the many
examples and the general motivation it gives.

This work may be of interest to theoretical computer scientists, but also to
logicians and recursion theorists (like myself) who have worked on the connection
between recursive definitions and computability. I have included enough basic,
expository material so that the paper is easily accessible to both these groups.

PART 1. BASIC DEFINITIONS

?1A. Notation. We will use standard set-theoretic notation and terminology,
except for a few special notations which we have collected in this section.

If x1,...,x,, are given objects, the string XlX2 Xn is the same object as the
sequence (x1,... , XJ). If a and z are strings, then az is the concatenation of a and z, and
"v _ I" means that a and z are identical.

We will write f: A - B to indicate that f is a partial function on A to B, i.e. a total
function on some subset D of A, f: D -+ B. As usual:

f (x)J x xE D (f (x) is defined),

f (x)t x 0 D (f (x) is undefined),

f (x) w.f (x)W & f(x) = w,

f (x) - g(y) ---> either f(x)t & g(y)T
or for some w, f (x) w & g(y) - w.

If f: B1 x x Bn- C and for i = 1,.. .,n, gi: A-Bi, then the substitution of
gi, .. .gn in f, h: A-C, h(x) f(g1(x), gn(X)) is defined in the obvious way,
so that in particular

h(x)J -> g1(x)l & ... & gn(x)l & f(gi(x), gn(X))

In the case n = 1, this is the composition of g and f.
The nowhere defined partial function will be denoted by the empty set symbol 0.
For abstraction, we will use both the logical A-notation and the algebraic nota-

tion, where the bound variable is indicated by a dot; i.e. if f: U x X- W, then for
each x E X,

f(.,x) = A(u)f(u,x): U- W,

THE FORMAL LANGUAGE OF RECURSION 1219

and for each u' E U,

f(., x)(u') X A(u)f(u, x)(u') - f(u', x).

We will also use the common index notation for sequences, <ai: i < n>
- ao,.. ., an, sometimes skipping the angles in the presence of other delimiters, such
as (ai: i ? n) = (ao,...,an) or [ai: i < n] = [ao,... ,an]. Since we will need often to
deal with sequences from 1 to some n, it is convenient to set <ai: i < ' n> = a, ... , an.

?1B. Types and pure typed objects.
DEFINITION l B. 1. A set of basic types is any set B which contains the string "bool".

The set of types T = T(B) (which we will use) over B is defined by the following
recursive clauses.

ti. If u, .. ., u are basic types in B, then the string (ui1,.. . , u-,) is an individual type
in T.

t2. If i- is an individual type and w- is a basic type, then the string (i- - W-) is a
partial function or pf type in T.

t3. If xl, .. ., ixn are basic or pf types, then the string (xl .. ., x) is a product type
in T.

t4. If x is a product type and w- is a basic type, then the string (x -v w) is a func-
tion type in T.

Clearly every individual type is also a product type, and every pf type is also a
function type. We allow n = 0 in these clauses, so that () is an individual type.

We have chosen names for these types which suggest the use we will make of them
in the interpretation of programming languages. Individual spaces will represent the
"given" sets of tuples, on which we will accept definition by recursion as
fundamental; objects of function type will interpret "functions", i.e. algorithms
which act on individuals, may call other algorithms and are expected to return a
value; objects of pf type will denote partial approximations to functions.

The "pure" type structure we will define here is the natural domain for the
interpretation of programs which have no dependence on the state and no side
effects-e.g. the programs of Pure Lisp. In Part 3 we will define more complex type
structures in which we can interpret less restricted programs.

DEFINITION 1B.2. A pure (many sorted) universe over a set of basic types B is any
family of sets 1 indexed by B, 1 = {J(i): i E B}, such that 1(bool) = {0, 1}. The
basic objects of 1 are the members of the basic sets of A, and the other typed objects
of 1 are defined by the following recursive clauses corresponding to t1-t4.

pol. An individual of type i- = (upl.. , i) is any member of the Cartesian product
U = V(41) x ... x 1(u-iJ. We will consider every space of individuals U as a
partially ordered set (poset), equipped with the trivial (flat) partial ordering =.

po2. An object of pf type (i- - W-) is any partial function (pf) in the space P(U, W)
-{p: U - W}, where U and W are the individual and basic spaces respectively of
type i- and w. Each pf space P(U, W) carries the natural partial order of inclusion,

p < q 4 (Vu)[p(u)J => p(u) - q(u)] (u E U).

po3. A point of product type x- = (x1,... ., 5n) is any member of the product space
X = X x... x Xn, where each Xi is the basic set or pf space of type xi. Each

1220 YIANNIS N. MOSCHOVAKIS

product space carries the product partial ordering of its factors,

(xi, X.) < W X') --> X, < X' & ... & X, < X'.

po4. An object of function type (x -w i) is any partial function(al) f: X -W

on the product space of type x to the basic set of type w- which is monotone relative
to the canonical partial ordering on X:

[f[x] w & x<y] -= fly] - w.

Every total or partial function f: U - W on an individual space to a basic set is a
functional, as are the application and conditional functionals, for each i-, wi:

ap,[p, u] p(u) (u e U, p: U -W),

condu ,[i,q,r,u] - if i then q(u) else r(u) (i e {0, 1}, u e U,q,r: U - W).

In abstract recursion theory the following discontinuous monotone functional is
used to represent existential quantification over the individual space U:

E 1 if (]u e U)p(u) - 1,
E,(P) - lo if (Vu e U)p(u) 0.

As in ARFTA, we will reduce Cartesian products of product spaces to their basic
and pf components, so that if X = X x x Xn and Y= Y x ...x Ym are two
product spaces of respective types x = (x-,.. .,xn) and j- = (--1 ,m), then by
definition their product is the space

X X Y=X1 X ... X Xn x Y' x ''x'n Ym

of type X Y g) Similarly, if x= (x,...,xn) and y=
(yi,. .,ym) are two points in these spaces, then (x,y) = (x1,... ,xnYi-.my) is
their concatenation in X x Y. We take I to be the Cartesian product of no factors,
which (formally) has only one element (the empty sequence) and for each X satisfies
X x I = I x X = X.

?1C. The syntax of FLR.
DEFINITION 1 C. 1. A signature or similarity type is a triple z = (B, S, d), where B is a

set of basic types, S is any set (of function constants) and d is a mapping which assigns
to each f e S a function type d(f) over B.

For a fixed signature z, the formal language of recursion FLR = FLR(z)
associated with z is defined as follows.

Variables. FLR has an infinite list of basic variables of type i, for each basic type i,
and an infinite list of pf variables of type (i- - W-), for each pf type (- w-).

It will be convenient to call an arbitrary string u _ ul,..., um of distinct basic
variables separated by commas, an individual variable of type (u- ,...,um), where

-1 -m u- ,..., u are the basic types of ul,...,um. This will include the empty string 0
which has type (). Notice that these sequences do not behave like true syntactic
objects, for example the individual variables x, y, z and y, w "overlap".

Constants. FLR has the function constants of the signature z, and each of these
has an associated function type, also given by z. In addition, FLR has the following
function constants with the indicated function types.

THE FORMAL LANGUAGE OF RECURSION 1221

Truth and falsity. 1 and 0 are constants of type (() bool).
Conditionals. For each basic type w-, there is a function constant cond, of type

((bool, (() -W-), (() -W-)) -W-).
Expressions. There are two kinds of expressions in FLR, terms, of basic type and

pf terms, of pf type; each expression has an associated list of free occurrences of
variables in it. We will define these notions simultaneously by the recursive clauses
T1-T5.

Ti. Each basic or pf variable is a term or pf term respectively, with its own type,
and it occurs free in itself.

T2. If each t1 is a term with type tj (i = 1,., n) and p is a pf variable of type
((T,.. . , in) iw), then the string p(t1, . . ., tn) is a term of type W. The free occurrences
of variables in this term are those in t1,. . , tn and the new occurrence of p.

In the case n = 0, this clause introduces the term p() of type W-, whenever p is of
type (() W).

T3. If t is a term of type w- and u u,.. .,um is an individual variable of type u,
then the A-term A(u)t is a pf term of type (i- W). The free occurrences in this pf term
are the free occurrences of variables in t other than ul.... Ium. When m = 0, this
allows the A-term A()t of type (() W-), with free occurrences exactly those of t.

Pf variables and A-terms are the only pf terms which we will use in FLR, but more
general pf terms come up in extensions.

T4. If f is a function constant with type ((tj,..., T i W), and each t, is an
expression with type ti, then the string f[t1,... ,tn is a term of type W-. The free
occurrences in this term are those in t1,... , tn . If n = 0, we will typically abbreviate
f[]byf.

We will use the obvious abbreviations in connection with the special functions we
put in FLR for every signature z,

1 _ 1[] (truth), 0 _0[] (falsity),
if s then t1 else t2- cond,[s, A()t1, A()t2] (conditional).

These abbreviations are unambiguous, because the type w- needed to identify the
functional cond, can be read off the types of the given terms.

An expression is explicit if it can be constructed using only T1-T4. The last clause
introduces the recursive terms.

T5. If U1, .U. n are individual variables of respective individual types ups 1., urn, if

Pi, Pn are distinct pf variables of respective types (u1 w), . ., (... IOn wn) and if
to tt1, . . ,ttn are terms of respective types W, . ., wn, then

t -- rec(ul, Pl . . . Un, Pn)[t0 ti, * * * p tn.]

is a term of type W. We call the terms to,... , tn the parts of the recursive term t; to is the
output or head part. An occurrence of a variable v is free in t if it is in some t, and the
variable v is not one of the basic variables in the sequence ui or one of the pf variables
in the sequence Pi,. . ., Pn . Any one of the sequences u1,. . ., Un may be empty, so that
the clause allows constructs of the form rec(p, x, q)[to, t1, t2]. We also allow n = 0,
so that for each term t, the expression rec()[t] _ rec()t is a term.

A more familiar notation for our recursion construct would be

rec(ul,p1,. . .*u ,p)[tot1, . . ,t_ to where {p1(u1) t1, . . .,p(un)

1222 YIANNIS N. MOSCHOVAKIS

The type restrictions in T5 insure that the equations pi(ui) - t. make sense, i.e. both
sides have the same basic type. We have adopted a notation which is not very
"friendly", but it follows the traditional practice of logic, with the variable-binding
operator rec in the front and the occurrences of variables it binds "within its scope";
this makes it harder to use the construct but easier to argue about it-and this is
what we will mostly do here.

The definition of terms was presented here in its complete, messy glory, because
we will use it as a "template" for definitions and proofs by induction on the
generation of these syntactical objects: we will treat cases T1-T5 assuming each
time the notation and assumptions on types established here.

Bound occurrences of variables. Occurrences of variables in expressions which are
not specified to be free by the clauses above are bound. For example, u',... , um are
bound in all their occurrences in A(u',... ,um)t by T4. In the recursive term of T5, all
the occurrences of Pl,... ., Pn are bound, and the basic variables in the sequence ui are
bound in the prefix and in their occurrences in ti.

Substitutions. If t(v) is an expression, v is a basic variable or function constant of
basic value type w- and s a basic variable or term of type w-, we let

t(s) _ subst(t(v), v/s)

be the result of replacing every free occurrence of v in t(v) by s; similarly for a
simultaneous substitution,

t(Sl * Sn) subst(t(vl, . .V, n), V11S1, . ,VnISn).

Every occurrence of a constant is "free" for purposes of this definition.
Suppose s(u) _ s(u',... ,um) is a term of type w-, the basic variables u.... . ,um have

types ', . . ,iuim and r is a function constant or a pf variable with type (R - w), where
=_ (U, . . ., u-m). We define the A-substitution of A(u)s(u) for r in an expression t(r),

t(X(u)s(u)) _ subst(t(r), r/X(u)s(u)),

by induction on t(r), in the obvious way. All the cases are trivial-we "inherit" the
substitution from the subexpressions, except in case Ti when r _ p and case T4
when r _ f. In these cases we do the obvious,

subst(p(tl,... ., tn), p/I(u)s(u))

-s(subst(tl, p/A(u)s(u)),.. .,subst(tn, p/X(u)s(u))),

and similarly with f instead of p.
Finally, suppose s(x) _ s(x1,...,xm), where now xl,...,xm are basic or pf

variables and t(r) is an expression, where r is a function constant such that
r(x1,..., xm) is a term. We define

t((x1,... , xm)s(x)) subst(t(r), r/(x1,... , xm)s(x))

in the obvious way, by replacing each r(t1,... ,tn) in t(r) (recursively) by the
expression s(subst(tl, r/X(x)s(x)),. . . ,subst(tn, r/X(x)s(x))).

Typically we will use simultaneous substitutions of all kinds and we will tacitly
assume that they are free, i.e., that no free variable of an expression which is being

THE FORMAL LANGUAGE OF RECURSION 1223

substituted becomes bound in the result of the substitution. By the substitution p/q
we will mean p/X(u)q(u).

The language REC of ARFTA was somewhat more complex than FLR because it
had a built-in pairing function. In addition, the recursion quantifier of REC was
different, but can be easily defined in terms of rec; calling it rec' here, we can set

(rec uldple UnoPln U Pl)[Ptl)tn]

-def rec(UloPl~ .. * eUnsPAM[p 01,-) o .,tn]

?1D. Denotational semantics on functional structures. To illustrate the notions,
we will consider in this section the most natural denotational semantics of FLR on
structures with functionals.

DEFINITION ID.1. A functional structure of signature z = (B, S, d) is a pair A
- (l, f), where i is a (pure) universe on B (as in 1B.2) and E = {E(f): f e S} is a
family of monotone functionals on A, such that the type of F(f) is d(f).

A functional structure is first order if every functional in it is a total mapping
hF(f): U -+ W with no pf arguments. These are the familiar (many sorted) structures
of model theory, with given relations, functions and constants, where each relation
R is identified with its characteristic function into {o, 1},

R(u)- 1 if R (u),
(O if -iR(u).

Most often there are finitely many objects of each kind, and the structure is of the
form

A = (All...,AkRl,...,Rlfl,...,fmCi, ... ,Cn),

or even with just one basic set (other than {0, 1}) as in the case of the structure of
arithmetic

N = (N, 0, succ, pred, zero);

here N = {0, 1,... ,} is the set of natural numbers and the givens are the constant 0,
the successor and predecessor functions and the unary relation of identity with 0.

The expansion of N

(N, EN) = (N, 0, succ, pred, zero, EN)

by the functional which embodies quantification on N is the classical structure of
hyperarithmetic theory.

Finally, there are natural set structures of the form

V = (V,0,e,pair,u,rep),

where V is a suitably closed class of sets (e.g. the hereditarily finite sets, or all sets),
E is the membership relation (mapping into {0, 1}) and rep is the key replacement
functional

repnx, p) InJ(i) Ii; c1 -
xJ (:V - VA

1224 YIANNIS N. MOSCHOVAKIS

Functional structures were called recursion structures in ARFTA, which contains
several Imore interesting examples of them.

DEFINITION 1D.2. An assignment into a functional structure A is any partial
function it which is defined on all pf variables and some basic variables cf FLR, and
which assigns (when defined) to each variable x an object in A (basic or pf) of the
same type as x. We partially order assignments by

i <? p -
(Vx)[it(x)J * [P(x)J & 7t(x) < p(x)]].

The use of partially defined assignments is appropriate since the terms will denote
partial functions, and it will insure later that the property of replacement holds.

We will define a partial function

val: Expressions x Assignments - Objects of A

so that the following conditions hold:
(ci) val(t, it) is defined for all pf expressions t, and if val(t, 7t) w, then the type of

w is the same as the type of the expression t.
(c2) val is monotone, i.e. for all terms t,

[val(t, 7c) w & 7c < p] =>val(t, p) w,

and for pf expressions t,

it < p = val(t, 7t) < val(t, p).

(c3) val(t, it) depends only on the values of it on the variables which occur free in t.
The definition is by the following five natural recursion clauses, corresponding to

the clauses T1-T5 of the definition of expressions, and the proof of (cl)-(c3) in each
case is easy.

V1. val(x, it) i7(x).
V2. val(p(tl, .. ., tn), 7c) - (p)(val(tl, 7c), . .., val(tn, 70)).
V3. val(A(u)t, it) = A(u)val(t, 7t[u/u]), where 7t[u/u] is the assignment which

agrees with it on all variables, except on the basic variables in the list u, on which
it is defined so that it assigns u to u.

V4. val(f [tl, . . ,tn] 7E) ~F(f) [val(tl, c), . .., val(tn, c)] .
V5. If t _ rec(u1,p1,.. . un.Pn)1t05t15 , tn], let for i = 0,. , n

hi[ui, pl,, Pn] val(ti, 7c[ui/ui, pllpl,.. I Pn/Pn]),

where the assignment on the right is obtained from it by changing the value just on
the variables ui, Pt1, .. ., Pn to make it ui, Pt1, .. ., Pn respectively. (Notice that u0 is the
empty individual variable.) Now by (c2) of the induction hypothesis, each hi is a
monotone functional, we can show by familiar methods that the system of equations

hi[ui, p,. , Pn] puPik) (i = 0, 1, .. I n)

has a sequence Po, Pt'. . , P-n of least simultaneous solutions, and if we set

val(te) i Piot
-

val(to, 7E [P 1 /Pl1, ., Pn/P-n])

then val(t, 7c) is monotone in 7r.

THE FORMAL LANGUAGE OF RECURSION 1225

DEFINITION 1D.3. Let x = x1,...,x,, be a sequence of (basic and pf) variables
which includes all the free variables of a term t. The denotation of t, in the functional
structure A, relative to x is the functional

den(x, t): X - W. den(x, t)(x) - val(t, xx,),

where X is the product space with type that of the sequence x, W is the basic set with
type that of the term t and for each x = xi,. X , x ,, it is any assignment which assigns
xi to xi, for i= 1.,n.

To give just one concrete example in the structure N, let

(1D.4) x - y = rec(i, times, j, plus)

[times(y),

if zero [i] then 0 else plus(times(pred[i])),

if zero [j] then x else succ[plus(pred[j])]].

The denotation of the term x - y on the variables x, y is the function which assigns to
each x, y the value of the principal (first) least fixed point of the equations

po() - times(y),
times(i) - if i = 0 then 0 else plus(times(i - 1)),

plus(j) - if j = O then x else plus(j -1) + 1,

i.e. the product of x and y.
DEFINITION 1D.5. Two terms are denotationally equivalent if they take the same

value for all assignments, on all structures,

S 'den t : (VA, it in A)val(t, it) - val(s, 7t).

Fact 1D.6 (The denotational replacement property). (1) If t(x) and w are terms
so that the substitution of w for the basic variable x in t(x) makes sense and is free, then
for every assignment it, in every structure,

val(t(w), ir) - val(t(x), it[x/val(w, it)]);

hence for all t1(x), t2(x), w1, w2:

[t1(x) "Wden t2 (X) & W 1 -den W21] = t 1 (W 1) ..den t2(W2)

(2) Similarly, if the substitutions make sense and are free, then for every structure A,

f = den(x, w(x)) => (Vt(f), 7t)[val(t(f), it) - val(t(A(x)w(x)), it)];

hence for all t1 (f), t2(f), w1(x), w2(x),

[t1 (f) -den t2 (f) & w1(x) ' 'den W2 (X)] t 1(I(x)W1(x) -()den t2 WX) W2 (X))

The proof of the first assertion in each part is by a routine induction on t(x) and
t(f), and the corollary claims follow immediately.

Notice that the two terms

t1(x) -if x then 1 else 1, t2(x) 1,

1226 YIANNIS N. MOSCHOVAKIS

take the same value (1) for all assignments which are defined on the Boolean variable x,
but if tial(w,)T, then val(t1(w),)T, while val(t2(w),) = 1; it follows that we must
allow partially defined assignments if we want the replacement property to hold.

?1E. Congruence and special terms. In languages with variable-binding
operators, expressions which differ only by an alphabetic change in their bound
variables are equivalent in all respects. Here we must introduce a coarser notion of
congruence between terms because of the operator rec; it is natural to disregard the
vacuous quantifer rec(), and to identify recursive terms which differ only by the
order of their parts (other than the output part).

DEFINITION 1 E. 1. Congruence is the least equivalence relation =-- on the class of
expressions which satisfies the following:

C1. For every pf variable p, p - A(u)p(u).
C2 t c t'ic. tn=-c tn] ="' P(ti 5 .. * >tn)- Cp(t 1 ** * tn

C3. If z1,... , zm are fresh basic variables (which do not occur in t or t'), then

subst(t, u1/z 1, ..., um/zm) -c subst(t' Iv 1/z 1 ..IVM/ZM)

A (u',..., UM)t _ A(v',... , vM)t'.

C4 t c t',. , tn =-c tn] --> f Iti, - , tn] -cf It', - , tJ]
C5a. rec()[It] _c t.
C5b. rec(u1,,. . ., uJ)[ti, t, . . ., tn]-c rec(vj, ., Vn, qn)[t'o, t',, ., tJ] if there

exists a permutation u on {O, 1, ... , n}, with inverse p and (0) = 0, such that the
following two conditions hold:

(a) For i = 1, ... , n, the pf variables P,(i) and qj have the same type.
This implies by the type restrictions on clause T4 that the individual variables u,(j)

and vi also have the same type.
(b) If r1,.. ., rn are fresh pf variables and z1,... , Zn fresh sequences of basic vari-

ables with types so that the substitutions below make sense, then for i = 0, 1.. . n,
the term

subst(tp(i), vpMI~ZPMi) qllrl,.. i qn/rn)

is congruent with the term

subst(ti, ui/zp(i), P,(1)/r,1rj, **I Pf(n)lrn)

For example,

rec(u1,,P1,U2, P2, U3, p3)[to tl, t2, t3I=-c rec(U2, P2, U3, P3, Ul, P)[tO, t2, t3, tl],

taking a(1) = 2, a(2) = 3, a(3) = 1.
Fact 1 E.2. If t -c s, then every pf or basic variable x has the same number of free

occurences in t and in s.
Fact 1 E.3. If t -c s, then, on every functional structure A and for every assignment

it into A, val(t, 7t) val(s, it).
The proof is by induction on the definition of terms, a bit messy in case T4. --

Almost all the properties of expressions we will study are invariant under
congruence, and it is sometimes convenient to consider congruent expressions as
identical.

THE FORMAL LANGUAGE OF RECURSION 1227

In ?1D.4 of ARFTA we defined terms for REC in a restricted way, so that basic
variables were not terms. As a consequence (in particular) the identity function on
each basic set was not (automatically) defined by a term. For FLR we have stayed
closer to familiar terminology by calling "terms" the wider class of syntactical
objects which includes the basic variables. Still, it is important to identify the
subclass of terms which will define algorithms, and we will call these here "special".

1 E.4. Special terms. A term t is special if it is of the form p(t1, .. ., tn), f [t1, .. ., tn, or
(recursively) rec(u1, P1, .. I Un, PASO, . ., sn], where SO, . .,sn are all special.

It is easy to assign (by recursion on T1-T5) to each term t a sequence v1, . . ., Vn of
specific occurrences of basic variables which "prevent" t from being special; we can
then obtain special terms from t by substituting special terms t1, . . ., tn for Vt1, .. ., vn .
For example, we can obtain a special term defining multiplication in N by replacing
the single offending occurrence of the free variable x in the term of (1D.4) by the
following recursive special term which defines the identity on N:

(1E.5) id[x] _ rec(i,p)[p(x), if zero [i] then 0 else succ[p(pred[i])]].

Fact 1E.6. If s - t and s is special, then so is t.
The question whether the identity should be assumed automatically as defining

(directly and uniquely) an algorithm on every functional structure was discussed
briefly in ?2C of ARFTA. We will come back to it in [Moschovakis alg].

?1F. Recursive functional.
DEFINITION 1 F. 1. A functional f: X W on the universe of a functional structure

A is A-recursive if it is the denotation of a special term of FLR, relative to some
sequence of variables.

On the structure N these are the classical recursive functionals of [Kleene 1952].
The study of these functionals in various structures, or (globally) on classes of
structures of the same signature, is the proper subject of generalized or abstract
recursion theory, which has been developed extensively, both by logicians (mostly
on infinite structures) and by theoretical computer scientists (mostly on classes of
finite structures). It should be pointed out that there are many different approaches
to abstract recursion theory in the literature, and it is not entirely trivial to show
that the various notions of "recursive function(al)s" which have been introduced
all fall naturally (by choosing A carefully) under the present concept. Some results
of this type are mentioned in ARFTA.

It is easy to find examples of functions which are denotations of terms but are
not recursive, because they cannot be defined by a special term. More interesting
are the cases of recursive functions which can only be defined nontrivially, by a
special term which expresses some of their natural intensional properties, as in the
case of the identity on N above. A similar example is that of the identity on the
structure V of sets, which is defined by the special term

id[x] rec(i,p)[p(x), rep[i,p]].

The intensional theory associates with each term and argument where its denotation
is defined an ordinal stage which represents "the length of the computation"
expressed by the term. In this case, as one might expect, stage(x) = (the set-theoretic
rank of x) + 1.

1228 YIANNIS N. MOSCHOVAKIS

2. REDUCTION IN FLR

?2A. Introduction. In this (main) part of the paper, we will define a calculus of
reduction and intensional equivalence for FLR, and we will prove that every term t
can be reduced to a unique (up to congruence) equivalent term t*, which is
irreducible. The intended interpretation is that

(2A.1) t s t and s define the same algorithm,

(2A.2) t - s s defines "more directly" the algorithm of t,

so that irreducible (special) terms define algorithms directly in terms of the givens.
To collect evidence for these claims, we must produce a precise, mathematical

definition (a modelling) for the notion of algorithm, argue that it expresses ade-
quately our intuitive understanding of the concept, develop an intensional seman-
tics for FLR which associates an algorithm with each term, and then prove
outright at least (2A.1)-the second claim (2A.2) presumably being obvious. This
we will take up in [Moschovakis alg] and subsequent papers of this sequence.

The results of this part are purely syntactical and can be understood (formally)
without a precise knowledge of the intended intensional models. To motivate the
definitions, however, it is worth discussing here briefly and intuitively an important
issue which comes up in any attempt to interpret terms by algorithms. For the
example we will assume a relatively clear intuition of pure algorithms which have
no side effects, no dependence on a "state" and can be combined freely in parallel
with each other. The phenomenon illustrated, however, is quite general.

Consider the two terms f [t] and rec(p)[f [p()], t], suppose we have an algo-
rithm f which computes the given unary function f, and suppose we have already
defined an algorithm tiwhich computes the value of the term t. Assuming that these
algorithms may be combined in parallel, there is a natural way to compute the value
of the term f[t]: start both f and F; if f needs the value of t before ti has computed
it, have f wait; if (and when) t- produces a value pass it to f; if f produces a value give
it as the output. Similarly, there is a natural way to compute the value of
rec(p)[f[p()], t], assuming again that recursive definitions may be run con-
currently: start both f and t; if f needs the value of p() before t^ has computed a
value, have f wait; if (and when) t^ produces a value, call it p() and pass it to f; if f
produces a value give it as the output.

On the basis of this analysis, one may argue that these two terms are computed by
(essentially) the same algorithm, in symbols f[t] - rec(p)[f[p()], t]; taking
the special case when t _ r(), we then have

(2A.3) f [r()] -rec(p)[f [p()], r()

But there is a problem with (2A.3). Assume (for simplicity) that it takes just one step
(timeunit) to compute the value of each f [x]-and of course r()-and apply
(2A.3) to f [p()]: if we replace this term by its alleged equivalent within the scope
of rec, we get

(2A.4) i [r (en rec(p)[rec(q)[f [q()], ph)], r s v .

which is not true, even though the two sides obviously have the same value. One

THE FORMAL LANGUAGE OF RECURSION 1229

intensional difference between these two terms is that the natural algorithm we
would assign (by the same analysis) to the right-hand side will need three steps to
produce a value, while the one for the left-hand side will produce a value in two
steps.

The problem is that the algorithm assigned to the recursive term on the right of
(2A.3) already assumes the identification p() - r() and does not assign any "cost
for the call" involved in this identification; while the heart of the matter in the
algorithmic reading of f [t] is that a timeunit is assumed as "the cost of the call"
for the value of t.

Put another way, one intensional difference between f [r()] on the left of (2A.3)
and f [p()] on the right is that the latter lies within the scope of the variable-
binding operator rec(p) and is being computed in a different context than f [r()],
specifically the context where p is a recursion variable. The equivalence (2A.3) was
"justified" by an intensional reading of its two sides in the empty context.

?2B. The reduction calculus. According to this analysis, a term may express
different algorithms depending on where it occurs within a larger term-and
specifically on which of its free pf variables are within the scope of a rec quantifier in
the larger term.

DEFINITION 2B.1. A context is any set E of variables; the full context is the set of
all variables.

For example, in order to specify in the empty context the algorithm defined by a
recursive term

rec(ul, pl, . . ., Un, Pn)[t05- , tn15

we will need the algorithm defined by each ti in the nontrivial context Ei=
{uiPl,. . l P.}

DEFINITION 2B.2. An expression is immediate in a context E if it is congruent to
a basic variable, p(v1,. . .,vn) with p, v1. .Ve E or A(u,... ,um)p(vl,. .. ,vn) with
v Vil - . . . Vnc- E u lull, ... I uml.

The motivation is that if we are computing a function f in a context E, then the pf
variables in E name other functions which are being computed concurrently with f
in a joint recursion, and the basic variables in E are the local variables of the
recursion.

DEFINITION 2B.3. Reduction in E, E, and equivalence in E, -E, are defined by the
recursion clauses R1-R11 in the table, where s, t are terms, E is a context, d, b
are (possibly empty) sequences of expressions, the obvious typing restrictions are
assumed so that the expressions on either side of +E and -E are terms, and
r, r1,. . ., rm are "fresh" variables in R1-R5.

R1-R3 reduce explicit computation to (trivial) recursion, and could be motivated
further by an elaboration of the discussion in the preceeding section; R6 makes tE

coarser than--; R7 makes E transitive; R9-R11 (with R6) define 'E as the least
equivalence relation which is coarser than E.

The key clause R8 allows for the reduction of nontrivial recursive terms, given
reducts of their parts in the relevant, enlarged context.

1230 YIANNIS N. MOSCHOVAKIS

TABLE. THE REDUCTION AND EQUIVALENCE RULES

RI p(a, t, b) -E rec(r)[p(a, r(), b), t] (t not imm. in E).
R2 f [a, t, b] HE rec(r)[f [a, r(), b], t] (t not imm. in E).
R3 f[a,)(U)t, b] HE rec(u, r)[f[a, r, b], t] (L(u)t not imm. in E).
R4 rec(u. p,)[rec(v1.., q.)[so(qI, . . ., , sm(q . t. qm)]j ti , tn]

E rec(v,,r, v2, r2,...vm,rmUpl Pi.Pn)
[so(r, , rm). , sm(r I rm), tl, t2. , tn]

R5 rec(u , . . pn)[tO, rec(v , . . ., qm)[so(q1 , q) m)] t2 , tA]

-_Erec(uloplulIvlrlulV2,r2-.. U1,VmormU2,p2 ...Pn)

[toso(rI(u , *)9 ... ,rm(uI, *))..sm(ri(u, *) rm(u, K)t2. tn]

R6 S I C 2 =- S I HE S 2

R7 sI _E S252 _ES3 => SI HES3

R8 If J(i) = E u {JU, pI ... ,Pn }then
So -J(0) t 0 9 .. * *Sn 4J(n) tn

=- rec(u 1 9 .p.. 9Sp)[S0 ... *S n I-+E rec(u , . Pl tO , t n]

R9 SI DE S2 I -'ES2

RIO SI ~'ES2 ' S2 'ES1-

Rll Si 'ES29S2 'ES3 - SI 'ES3

Finally, the most crucial clauses are R4 and R5, which reduce the nesting of
the rec quantifier in terms. It is a bit easier to decipher their special cases with n =

m = 1, which have fewer dots:

(a) rec(u, p)[rec(v, q)[so(q), sl(q)], t1] H+E rec(v, r, u, p)[so(r), s1(r), t1],

(b) rec(u, p)[to, rec(v, q)[so(q), sl(q)]] H+E rec(u, p, u, v. r)[to, so(r(u, *)), sl(r(u,)]

where r(u, *) _ A(v)r(u, .). One may give a pretty convincing, intuitive justification
for these reductions based on an informal notion of algorithm, but we will not take
the space to do this here. On the other hand, it is important to point out that they-
and all the other reductions-preserve values.

THEOREM 2B.4. For each functional structure A, assignment 7t into A and context E,

s -E t -* val(s,7r) - val(t, 7r).

PROOF. We show by induction on Ri-R11 that both HE and -E preserve values,
the only nontrivial case being R5. We will outline the argument for the special case
(b) of R5 above, which is well known (in various guises) as the reduction of
simultaneous to iterated least-fixed-point-recursion: it is called the Bekic6-Scott
principle in [Park 1980].

Showing all the variables which are relevant, the two sides of (b) look as follows:

LHS rec(u, p)[to(p), rec(v, q)[so(u, p, q), s1(u, p, v, q)]],

RHS rec(u, p, u, v, r)[to(p), s0(u, p, r(u, *)), s1(u, p, v, r(u,))].

We fix the values of any other free variables which may occur in these terms and use
the same symbols to, so,... to name the (functional) denotations of the terms.

THE FORMAL LANGUAGE OF RECURSION 1231

Define the functional

(2B.5) F(u, p) = piq[(Vv)s (u, p, v, q) - q(v)]
= the least pf q such that

(Vv, w)[sj(u, p, v,q) -_ w -* q(v) - w];

then (easily) F is a monotone functional, we can set

(2B.6) j = up[(Vu)so(u, p, F(u, p)) - p(u)],

and by the definition val(LHS) - to(-). Similarly, if pr are the least partial
functions which satisfy for all u, v the equations

(2B.7) so(u,p,r(u, p(u),
(2B.8) s1(u, p, v, r(u, *)) r(u, v),

then val(RHS) to(p), so that we only need prove that j = p.
Let F(u, v) - F(u, p)(v) and notice that from (2B.6) and (2B.5) we have

so (u, p, r-(u, *) A~pu), Si (u, p, v, r-(u, *) Fr(u, v),

so that by the characterization of p and Pas the least fixed points of (2B.7) and (2B.8),
we get c p -and r = F.

To prove the converse, for each u let

(v) - rA(u, v) - s (u, p v, 4u),

with the second equation coming from (2B.8); hence, by the definition of F,

(2B.9) F(u, ' ,

and, using the monotonicity of so,

so (u,pF(u,p))w

=so (u, ~"- W

=> so(u,ff,7(u, .)) - w

p(u) - w (by (2B.7)),

so that by the characterization of
-

we have p` c p and the argument is complete.

We will end this section with some simple results which relate E and -E for
varying contexts E. We let -*f denote reduction in thefull context,

(2B.1O) s f t s -{allvariables} t,

and similarly for equivalence in thefull context, -f.
Fact 2B.11. Let s, t be terms and E, F contexts.
(1) [S -Et & E =) F] =* s F t, so that in particular, for all E,

S +f t s 5E t s S +0 t*

(2) There are s, t, E such that s 0 t but not s E t.

1232 YIANNIS N. MOSCHOVAKIS

(3) If the variable z does not occur free in s, then for every t,

S w-E t -~ S --E u (z t-

(4) If E contains all the free variables of s and s HE t, then E contains all the free
variables of t and s Of t.

PROOF. (1) If E - F, then every expression which is not immediate in E is also not
immediate in F, so that (directly from the definitions) every basic reduction valid in E
is also valid in F.

(2) p(q()) -*0 rec(r)[p(r()), q()], but if q e E, then no reduction applies to p(q())
relative to E.

(3) Use induction on -E, noticing that if z does not occur in s, then every
subexpression of s which is not immediate in E is also not immediate in E U {z}.

(4) Check first by an easy induction on -E that if S -E t, then every variable has
the same number of free occurrences in s and in t. Another easy induction verifies
that if E contains all the free variables of s, E ' F and s -E t, then s -F t. Using this
and (1), we then get, for arbitrary F,

S -Et > S-EuFt -- S Ft

DEFINITION 2B.12. A term s is irreducible in the context E-or plain irreducible
when E = {all variables} -if, for every t, s -HE t =- s c t.

Recall that a recursive term is one which begins with the quantifier rec while an
explicit expression is one in which the quantifier rec does not occur at all. The next
definition helps describe easily the class of irreducible terms.

DEFINITION 2B.13. An expression t is simplified if either the vacuous recursion
quantifier rec() does not occur in t, or t = rec()s, and rec() does not occur in s.

Fact 2B.14. (1) If a term t is irreducible in a context F, it is irreducible in every
larger context E - F.

(2) Every term t is congruent to a simplified term, and to a recursive simplified term.
(3) A simplified nonrecursive term t is irreducible in E if and only if it is a basic

variable or in one of the forms p(tl,. ..,tn) or f[tl,. . ,tn], where t1,. . .,tn are

immediate in E and simplified, so that in particular t is explicit. (These forms include 1,
0, and if s then t1 else t2 with s, t1, t2 immediate in E and simplified.)

(4) A simplified recursive term

t =_ rec(Ul, Pl,. ...,~ UnPnV[O, tl o tn.]

is irreducible in E if and only if each t1 is a simplified explicit term, irreducible in
E ulUbPl. M-

Proof (1) is immediate from (2B.1 1) and (2) is trivial: simply delete all vacuous
rec() from a term to get a congruent, simplified term, and if this is not recursive, add
a rec() in the front. (3) and (4) follow directly from an examination of the
reductions. -

It is not hard to see directly that every term can be reduced to some simplified,
irreducible term. This, however, will be an immediate consequence of the proof we
will give in the next section of the uniqueness of the final reduct, so we will not give a

separate argument here.

THE FORMAL LANGUAGE OF RECURSION 1233

?2C. Normal forms. In this section we will define a syntactic transformation on
terms

(2C.1) ti-+ nf(t, E) _ rec(ulpl,... I UnPn)[tO t1* tn]

such that nf(t, E) is a simplified, recursive term, irreducible in E, and t -HE nf(t, E). We
will then prove in the next section that (up to congruence) nf(t, E) is the unique
irreducible in E term t* such that t -E t*-

The definition of nf(t, E) is naturally by recursion on t, and its most interesting
case is when t is a recursive term, when we must combine several nested recursions
into one. For this we will use a syntactic transformation which combines several
applications of the reduction rules R4 and R5.

Using the notation conventions of 1A for sequences, we can specify an arbitrary
recursive term by

t _ rec(ui,pi: i <'n)[ti: i < n],

and rule R5 can be expressed by

rec(ui, Pi: i < 'n) [to(pi, , . Pn),

rec(vj, qj: j <'m)[sj(ql, ..., P, i , Pn): i < m,

<ti(pl,- - -pn): 2 < i < n>]

-*Erec(<ulvjrj j < m>,<ui,pi: 2 < i < n>)

[to(ro, P2, . ,Pn), <sj(rl(ul, *,.,rm~ul, *), ro, P2, *, : in < MX

<ti(rop2,. .. p): 2 < i < n>].

Notice that the pf variable ro occurs in the prefix of the right-hand side and has been
substituted for Pt in the parts; it "names" so.

DEFINITION 2C.2. The operation rc. Suppose t is a doubly recursive term, i.e.

(2C.3) t _=rec(ui, pi: i <'n)[ti(pj,. .PJ): i < n],

and for i < n,

(2C.4) ti(pI,... ,Ipn) rec(vij, qij: j <' m(i))

[tij(qil,...,qjm(i),pl,...,pi): j < m(i)].

The recursive combination of t is the recursive term

rc(t) -=rc t =_ rec(ui, vij, rij: i < n, j < m(i), (i, j) 7& (O. 0))

[tij(ril (ui, *)..rim(i)(ui, *), rlo,..., rnO): i < n, j < m(i)],

where the pf variables rij are fresh and

rij (ui, *)=)-(vijj)rjj (ui, vij).

We must check that rc(t) is indeed a term, i.e. that the indicated substitutions
respect types. Notice that the prefix rec(ui, vij, rij: i < n, j < m(i), (ij) 7 (0,0))
implies that the types of the variables match so that rij(ui, vij) makes sense; thus

rij(ui,) is a A-term which can be substituted for qij in tij(qil qim()pl, Pn)

since the prefix rec(vij, qij) in (2C.4) implies that qij(vij) is well-formed. Al similar

1234 YIANNIS N. MOSCHOVAKIS

argument justifies the substitution of rjo for pj (I > 0), since vjo = 0 and hence
rjo(uj, vO) _rjo(uj) is well-formed, just as pj(uj) is well-formed.

The basic property of the operation rc is that it combines several applications of
the reductions R4, R5 and R6.

Fact 2C.5. For each doubly recursive term t as in (2C.3), (2C.4) and each context E,

t HE rc t.

Proof Suppose t is as in (2C.3)-(2C.4) and apply R5 to it in the formulation
above, using the hypothesis that uo = vi0 = 0 for all i <'n, to get:

t +Erec(<ul, vl rlj: j < m(l)>, <ui, pi: 2 < i < n>)
[to, <t1j(r1o(u1, *)..rlm(l)(ul l), r1o . P2, - , PJ) i < m(l)>, t2l *tn]-

Now apply R6 to get a congruent term where t2 is the first part after the head, apply
R5 in the same way and then use congruence again to get

t H ELrec(<ui , rij: i <'-2, j < m(i)>, <ui, pi: 3 < i < n>)

[to, <tij(rio(uil *, ... , rim(i)(ui, *), r1o, r20, P3 , P,): i < 2,j < m(i)>, t3.* *.*, tn].

The result follows by doing this n times and then applying R4 once to reduce to.

DEFINITION 2C.6. Normal forms. For each term t and each context E, the sim-
plified recursive term nf(t, E) the normal form of t in E -is defined by recursion on
t. The (absolute) normal form of t is the normal form of t in the empty context,

(2C.7) nf (t) =_ nf (t, 0),

and the full normal form of t is the normal form of t in the full context,

(2C.8) fnf(t) _ nf(t, {all variables}).

NFL. For a basic variable v, nf(v, E) _ rec()[v] rec()v.
NF2. As a typical example of this case, suppose t p(w, t*), where w is immediate

in E and t* is not, and we have computed

nf(t*,E) _ rec(u1,P1, ... l Un Pn)[to I ... l tn]

where we may have n = 0 so that nf(t*, E) = rec()[t *]. We set

nf(t, E) _rec(r, ul, pl,. I *** Undo Pn[p(w, r(A) ton tn]-

In the general case, where t =p(tl,... I tn), we want to reduce those ti's which are not
immediate in E as we did with t*, and leave those which are immediate in E as
arguments. Notice that if t1,... , tn are all immediate in E, then

nf (p(tl,. ..,tn), E) =_ rec(Wptl)** tn) =c P41l J n

NF4. As a typical example again, suppose

t - f [w, s, i(u',.. . .,u k)t*],

where w is immediate in E, s is not immediate in E and L(u,... ,uk)t* is not

THE FORMAL LANGUAGE OF RECURSION 1235

immediate in E. Here w may be a term or a A-term. Suppose that

nf(s, E) _rec(vl, ql,.. I ,Vm, qm)[so, * *. I sm],

nf (t*, E u Jul,, u }~) _rec(zl, Pi, **, ZnI Pn)It0(PiI PJI .. Itn(Pi PA)

(where again some rec may be vacuous) and set

nf (t, E) _= rec(rs Iv 1, . . ,qm, rt, u, z1, r ,U, Z2, *U ,uZn, rn)

[f [w, rs(), rt], so, . . ., sm, to,, tfll,

where u u=,.. ,u" and, for i = 1,..._n tI ti(r(u,),...,rn(u,)). In the general
case t =[t1 . . . , tn], we reduce in E those among the expressions t.1, tn which are
not immediate in E (like s and ,(u)t* above) and we construct the normal form as
above, by plugging into f the immediate expressions and the "outputs" of the
expressions which are reduced. Notice the introduction of the additional occur-
rences of the recursion variables u in the prefix above. Again, if all t1,... , tn are
immediate in E, this definition gives

nf(f [to, *, tn], E)-=rec()f Ito, I .. tn] =c f t1,-*, tn]

An interesting special case of NF4 is when f is the conditional functional. To put
down one example of this, when w is immediate in E and s, t are not,

nf(s, E)-rec(vj, qj,, vm, qm)[so, , sm],

nf(t, E)-rec(ul, pl,.* *, Un, Pn)Eto, , tn],

we have

nf(if w then s else t, E)

-rec(rs, vjs. . * , qma rt, ul, P n)
[if w then rs() else rt(),, . . , sm, to, t].

NF5. Of course this is the most interesting and complicated case, but we set up the
notation for it in defining the operation rc. If

t -rec (ui1 Pi I Un a Pn)[to a ** * tn] a

set for i = O. ..., n

0*-nf(ti, E u {ui, pl, I PO)
t* -rec(UlPl . , Un,Pn)[to,*g-, tn*];

now t* is a doubly recursive term and we can set nf(t, E) = rc t*. It is important in
this case that each part t1 of the recursive term t is reduced in the enlarged context
E u 1Ui,Pl,-- ,P0}

This completes the definition of normal form. We will conclude the section with a
list of their most elementary syntactic properties, mostly skipping the proofs (which
are easy).

THEOREM 2C.9. For each term t and context E, nf(t, E) is a simplified recursive term,
irreducible in E, and t -+E nf(t, E).

The proof is direct, by induction on the definition, using (2B.14) and (2C.5). -1

1236 YIANNIS N. MOSCHOVAKIS

Fact 2C. 10. (1) A basic or pf variable v has n free occurrences in a term t if and only
if it haf n free occurrences in nf(t, E).

(2) If t is a special term, then so is nf(t, E).
(3) If t and t' are congruent, then nf(t, E) and nf(t', E) are congruent.
Proof. (1) and (2) are trivial. The proof of (3) is by induction on t, and it is again

completely trivial in the explicit cases. We outline the proof in Case T5, which is also
easy but notationally messy.

Now

t = rec(Ul, Pl * * gUn aPn*[O~ .. * tnI t' - rec(vj e ql q** Vn qn)[tlo .. * t~n]

and there is a permutation p: {O, ... I, ni {O,... , n} with p(O) = 0 such that si and
S/ are congruent, where si and s' are obtained trivially by substitutions into t,
and t'. By induction hypothesis then, the two terms

nf (si, E)-rec(..)[tio , tim(i)],
nf (s'(i), E)-rec(. E[t'(~o tl(~()

are congruent, so for each i, there is a permutation pi: {O,... , m(i)} -+ .,0... , m(i)}
with pi(O) = 0, such that sij and s5(j)p,(j) are congruent, where again these are
obtained by trivial substitutions from tij and tp(i)p,(j). To show the congruence of
nf(t,E) with nf(t', E), take the permutation p(ij) = (p(i), pi(j)) on {(ij): i < n,
j < m(i)} ordered lexicographically (so that p(O, 0) = (p(O), po(O)) = (0 0)), and plug
into the formula to show that the corresponding parts are congruent. -

?2D. Uniqueness of normal form. The definition of the normal form of a term
determines a "strategy" for applying the reduction rules in a specific order
("innermost first"), until an irreducible term is obtained. Here we will show that for
every two terms t, s and context E,

S

E

nf (s, E)--c nf (t, E),

which means that no matter which order we choose to apply the reduction rules, we
will always reach the same irreducible term-up to congruence. The heart of the
proof is a simple combinatorial lemma about iterates of the operation rc, which we
will prove by brute force, for lack of a better method.

Fact 2D. 1 (Lemma on recursion combinations). Suppose

(2D.2) s-- rec(ul1,P l. ..* Un , PASO [s - I * SnI

is a triply recursive term, i.e. each si is a doubly recursive term. Then

(2D.3) (rc)2s_ rc{rec(u1,...,pn)[rcso,..,rcsn]}.

Proof. Rewriting the definition of rc of (2C.2) in more uniform notation, if

(2D.4) t-rec(vi, qi: i <'n)
[rec(vij, qij: j <'n(i))[tij(qi,. qin(i), q,*... I qn): i < n(i)]: i < n],

then

(2D.5) rc(t) rec(vi, vij, 4ij: i < n, j < n(i), (i,j) 7 (0,0))

ifij~il(Vi,),*** in~i)(Vi, '), q1,,, . . n,): i < n, j < n(i)],

THE FORMAL LANGUAGE OF RECURSION 1237

where vo = 0, vi0 = 0 for i < n, and we are using the abbreviated A-notation

4i (vi,*) 04ij(vii).

Suppose now that the given term is

(2D.6) s =_rec(u,,, Pa: at < N) [sa(pl, PN): O < N],

where for each a < N,

(2D.7) sJ(pi.. PN) rec(uap pap: < ?'N(c))
[Sa (pal ,.. ,PaN(a), Pl, .,PN): f3< N(c)],

and for each a and /3 < N(@),

Sao (pal * .. * PaN(a) (Pl, .., PN)

(2D.8) _ rec(uY, P N P NoyNy? c)

[sa,#y(Pafll .. * PapNa al) p Pal ** PaN(a) p P 1 ** PN): MY< N(a, /)

Computation of the right-hand side of (2D.3). Fix a and apply (2D.5) with t sa
and tij safy We set i-, vi _ap qj-pai j-y vij _ugly and qij-paya so that
/3 varies from 0 to N(ox), and for each f3, y varies from 0 to N(ox, /3). Then

rc s,(Pl *** PN)

(2D.9) rec(uap, f' p afy: /3 ? N(#), y ? N(, /3), (3, y) 7) (0 0))

[saly((. 1PaflN(ax,) (Uafll,)P *) * *. e N(a), R

Pl,* .,PN): / < N(@), y < N(o,/3)].

To compute the right-hand side, we must reapply rc once more to the doubly
recursive term

rec(u., p.: a <'N) [rc sa(p ,..PN): a < N].

Let us first make an alphabetic change of variables in (2D.9) which removes all the
tildes from the subscripted variables p, and then compute, setting this time i-a,
Vi-Ur q Pat j /ly, vij- uay and qij Noy:

RHS -rec(u.uapuafy, afy a < N, /3 ? N(a), y < N(x,/3), (a,/3,y) 7 (0,0,0))

(2D. 10) [sapy(Pap1, Uap, .), . . ., PJaN(a ,)(ua, ua~p,),
(21). IO)

T~~~~~~~a lo (Ua a) .. * * TaN(a)o (uaa)

P100 ... NOO): ot < N.:# < N(a), y< N(o,)]

Again, we can simplify this formula by removing the tildes, through an alphabetic
change of bound variables.

Notice that the formula for rc calls for the following replacement of terms in the
matrix: qij(vij) - ij(vi, vij). In the first application here with i-/3 and j _ y (and
after we rename the variables to remove the tildes) this gives

and iapply(uicaio wt iante Ufuy)

and in the second application with i-=_a and j =,Bfy this gives the further

1238 YIANNIS N. MOSCHOVAKIS

replacement

Papy(Ua, Uapy) papy(U.
a

ap
p

Uafy),

which is what we get by the symbolic functional substitution

Papy *Papy(U. Ua, .).

Computation of the left-hand side of (2D.3). We must apply rc twice to the term

s rec(ua,pa: a <?'N)[s (pl,..-,pN): < N],

where the s 's are defined above. In the first application we are setting i _ a, v, _= ua,
j and vij uf and we get

(2D. I 1) rc s rec(ua, urp, TPp: a < N,/3 < N(x), (a fl) # (0,0))

[S. (T. I(U., '), - - P &N(a) (Ua ,),PTIO ,... P): a < N,/3 < N(a)].

To get the left-hand side, we must reapply rc once more to this doubly recursive
term, where the indexing of the parts is on the set {(o, /3): X ? N, /3 <N(x)},
lexicographically ordered. We set i = af3, vi _u, u4, j = y and vj_ p,,Y and a
careful plugging in gives for LHS exactly the same expression as the RHS in (2D. 10),
which completes the proof. H

THEOREM 2D. 12. For each context E and all terms s, t,

S H-E t -= n f(s, E)--=c n f(t, E),

and hence

s -E t n f(s, E)--_c n f(t, E),
for some term w, S H+EW & t E W.

PROOF. We must verify that each application of a reduction rule in the list R1-R8
preserves the normal form. Let us call "part (i)" the proof for Ri, and to simplify
notation, set s | 4E t < nf(s, E) _ t.

Part (8). Check first (easily) that for doubly recursive terms s *, t*,

s* = t* =rcs* arct*.
Now if si j(j) si", ti I 4J(i) ti" for i < n. then by the induction hypothesis si *
(i ? n), and

nf(rec(uj, .. ., PA)SO, ... sn], E)--rc rec(ul, , Pn)[So*, ,Sn*]

-crc rec(ul, . . ,Pn)[to*, . ,tn*]--nf(rec(uj,. M N)t , tn], E).

Part (6) is a restatement of (2C.10), and part (7) is trivial.
Part (5) follows from the following special case of the definition of rc:

rc rec(ui,, Pn)[rec()to* rec(vl, . q..q)[sO*(qj, ... I q.)q . 9s*(qlg .., q)],

rec()t*,...,rec()tn*]

THE FORMAL LANGUAGE OF RECURSION 1239

To see how to use this, let J(j) = {VJU15Pi.. ,Pnq1, .. , qm1}, suppose

S(q, 5 . .. 5 qm) "j(j) sj (ql 1 * .. * qm) (< m),

let K(i) = E lU {up. ..pn} and suppose ti K(i) t* (i = 0 or 2 < i < n). Notice
that by R6 we also have rec()ti F-+K(i) tI. By part (8) then, the left-hand side of R5
has the same normal form as

w
--
rec(ul, . .. 5Pn)rec()to,

rec(vl, * qm) [so(ql 1 * *. * qqm)5 * Sm(ql 5 ..
* qm)]

rec()t25 ... ,rec()tn]5

and by definition and the lemma on recursive combinations (2D. 1)

wf-*Erc{rec(ul...,pln)[rcrec()to*,

rc rec(v1, . . , qm) [s(q1, .. . qm) ...). S(q1, . qm)]

rc rec(),.,rc rec()n]

--(c) 2 rec(ul, .. ., pn[ef t

rec(vl, * qm)[so (ql 5.. * 5 qm)5. * .. - S*(ql 5 .. 5 qm)]5

rec(... ...rec(t*

By the special case of the formula for rc above then, this last term is

-Crc rec(ujlpj uj vj,1 ,U1,V2,42, .. * U15Vm qm5U25 .. * Pn)

[to
*

S (41(Ul q) * * q m(Ul q))5 .. *
s*

qS(Dlul 5 *)5 * 5 * mU)) t2 ...** tn*]

To complete the proof, it is enough to verify that for each j

(2D. 1 3) Si (4,(U l 5 *)5 .. * qm (U i *)) "Im J(j) j*l(U 1 5 *)5 .. * qM(Ul 1 *)

since this identifies the last term precisely as the normal form of the right-hand side
of R5. The proof of (2D.13) is easy, using only the fact that the expressions 41(u ,1)
are immediate in J(j) = {u1, Vj,P 1 q*... * * qmP1, ..., Pn}.

Part (4) is proved by a similar argument which we will omit.
Part (1). Assuming for simplicity that a-, b are single terms, that a is immediate in

E and that

b "E rec(vl 1 5 qm) [bo 5 .. bm]5

t -*Erec(ul, ... Pn)[tO *... * tn]

we have, by definition (using the hypothesis that t is not immediate in E)

(2D. 14) [p(a, rtn), r()vn),to, .. . tn b .. . bm]

Similarly, with r a new variable (not in b or t),

1240 YIANNIS N. MOSCHOVAKIS

rec(r)[p(a,r(),b),t]

(2D.15) +E rc rec(r)[rec(rb, Vl, . . . , q)[p(a, r(), rb()), bo ..., bm],

--e~b, Vl, .. .,qm, rU1,. . , Pn)[p(a, r(), rb()), bo, * ,bm, to, * ,tn]-

The normal forms in (2D.14) and (2D.15) are congruent, and hence p(a, t, b) has the
same normal form relative to E as rec(r)[p(a, r(), b), t].

The proofs of parts (2) and (3) are very similar, and the second assertion of the
theorem follows immediately from the first and (2C.9), using induction on the
definition of E and taking w _ nf(s, E).

THEOREM 2D.16. For each context E and term t, nf(t,E) is the unique (up to
congruence) term t* which is irreducible in E and such that t -*E t*.

PROOF. We have already noted in (2C.9) that nf(t, E) is irreducible in E and
t -+E nf(t, E). Notice also that if s is irreducible in E, then directly from the definition
of normal forms and (2B. 14), nf(s, E) - s; from (2D. 12) then, if t --*Es and s is
irreducible in E, then

n f(t, E)=-, n f(s, E)=--, s.

As another application of (2D. 12), let us verify that rule R8 is valid for equivalence
as well as reduction.

Fact 2D.17. If J(i) = E u {up1,. pn} (with uo = 0), then

So 'J(O) to, o ** Sn 'J(n) tn

== rec(ula . .. I PA)SO, *.* sn] ,E rec(uj, - *, M N)[Oo* tn]-

Proof. Set s* nf(si, J(i)) and similarly with t* and ti, so that, by (2C.9), si --*J(i) S*

and t, --*J(i) t*. By two applications of R8 then, using (2D.12) the second time,

~~~~~~~-Erec(ul ,...ap 

)S ***oS ] E rC Ula***ap )S 

*1 .. t* 
oS 

E reC(Ul * * * Pn)[t ***otn] 

But by another application of R8 we have 

rec(ul,. . ., MpN) , . . . , tn] --E rec(Ul, ***Pn)t ***o, II 

and hence these two terms reduce in E to the same term and they are equivalent 
in E. H 

?2E. Replacement results. We say that 

(2E.1) s is intensionally equivalent to t relative to E # s -E t, 

where the most interesting of these relations is the strictest '>, intensional 
equivalence in the full context. It is natural to ask whether intensional equivalence is 
preserved under substitutions, as denotational equivalence is preserved by (1D.4). 
The answer is "sometimes". 

THEOREM 2E.2 (Intensional replacement for terms). If S1(X), S2(x) w1 and W2 are 
terms so that the substitution of wi for the basic variable x in si(x) makes sense and is 
free for i = 1, 2, then 

(2E.3) [s1(x) E S2(X) & W1 -f W2] == S1(WJ) -E S2(W2)- 



THE FORMAL LANGUAGE OF RECURSION 1241 

PROOF. We show by induction on the length of the term s1(x), simultaneously for 
all s2(x), w1 and w2, that if w1 -f W2, then 

NW -x) E S2(X) v SJ~X) -E S2(X)] =Sl(W) -E S2(W)- 

The argument is quite direct, by cases on the reduction and equivalence rules. For 
example, suppose that by Ri (skipping the irrelevant side terms) 

P(t(X)) --E rec(r) [p(r( )), t(x)], 
so that t(x) is not immediate in E, and hence (easily) neither of the terms t(wi) is 
immediate in E. Compute: 

p(t(w1)) --E rec(r)[p(r( )), t(w1)] by Ri 

-Erec(r)[p(r( )), t(wj] by ind. hyp. and (2D.17) 

-EP(t(W2)) by RI. 

The other cases are handled similarly, by repeated appeals to (2D.17). H 
The situation is more interesting for A-substitution, which does not (in general) 

preserve intensional equivalence. We might expect that 

(2E.4) S1(f) -f S2(f) =* Sl(A(X)W(X)) -f S2(A(X)W(XA) 

whenever the A-substitutions make sense and are free, but there are two obstructions 
to this, illustrated by the following examples. 

EXAMPLE 2E.5. Suppose c is a function constant of 0 arity, and let 

si(c) _ C p Dc ], S2(C)=_ rec(r)[p(r( )),c[ ] 

Now sl(c) -*f S2(c) by Ri, but if w is a variable, then 

p(W) -,f rec(r) [p(r( )), w], 

because both these terms are irreducible and they are not congruent; thus (2E.4) fails 
for the A-substitution c/A( )w. 

EXAMPLE 2E.6. Let f, g, c be function constants, and (with the obvious assump- 
tions so that the terms are well formed) put 

s1(f) fc] 

s2(f)- fnf(sl(f)) rec(r)[f[r( )],c], 

w(x)_ g[xx], 

where we have abbreviated c _ c[ ]. Now s2(f) f s1(f), since every term is 
intensionally equivalent with its full normal form. On the other hand, we can 
compute: 

(2E.7) fnf(sj(A(x)w(x))) =_ fnf(g [c, c])-_=rec(rj, r2)[9 [rj( ), r2( )Ic, c], 

(2E.8) fnf(S2(A(X)W(X)))=_ rec(r)[g[r( ),r( )],c], 

and the A-replacement f/A(x)g[x,x] fails, since these two normal forms are not 
congruent. 

The intensional meaning of this failure of A-replacement is obvious from the look 
of the normal forms in (2E.7) and (2E.8), which express different algorithms for 



1242 YIANNIS N. MOSCHOVAKIS 

computing the same quantity g [c, c]: in a plausible algorithmic reading of the terms, 
(2E.7) would have us compute c twice and pass the two values separately to the 
algorithm for computing g, while the "smarter" algorithm of (2E.8) computes c only 
once. 

Nevertheless, some interesting and natural A-replacement theorems do hold 
and in fact the counterexamples above illustrate the only obstructions to re- 
placement. The basic idea is that the substitution 

f/I(Xl, . . ., Xk)W(Xl, - * * * Xk) 

preserves intensional equivalence if the term w(x1,... ,xk) is not immediate and 
"calls" its arguments in the same way that function constants do-basically "by 
value". We make precise the second notion in the next definition. 

DEFINITION 2E.9. A term w(v, x1, . . ., Xk) is balanced in the basic variable v relative 
to the variables X1, . . ., Xk, if for every sequence of expressions t1,..., tk and every 
term s which is not immediate (in the full context) 

(2E. IO) W(S, t1,. , tk) ~f rec(r)[w(r( ), tj, * * , tJ) SI, 

where we are assuming that the indicated substitutions are correct for typing and 
free. Similarly, w(p, t1, .. ., tk) is balanced in the pf variable p relative to X1, .. ,Xk if 

(2E. 1 1) wL(u)s, tl, ***tk) -f rec(u, p)[w(p, tl,... , tk), s], 

whenever the substitutions make sense and are free, and A(u)s is not immediate. 
A term w is balanced in xl, . ,Xk if it is balanced in each of these variables relative 

to the others. 
To see how we can use this notion, suppose W(V1, V2, p3) is balanced in V1, V2, p3, 

and t1 is immediate while t2 and A(u)t3 are not immediate. By applying successively 
the conditions above and the rules of reduction, 

W4t1, t2, A(U)t3) -f rec(rA)W(tl, r2( ), A(U)tA) t2] 

-f rec(r2)[rec(u r3)1W(t1, r2( ), r3)t3] t2] 

-f rec(u, r3, r2)1W(t1, r2( ),r r)t3, t2] 

-f rec(r2, u, rA)W(tl, r2( ), r3), t2, t3]. 

Before proving the replacement theorem, let us verify that there is a large supply 
of natural balanced terms. 

Fact 2E. 12. (1) Suppose X1, . . ,Xk are distinct variables, 

(2E.13) w = p(s1,..s-) 
or wf[s1,..snII 

and each xi either does not occur in w or it occurs exactly once and sj xi for some j; 
then w is balanced in X1 . *Xk. 

(2) Suppose 

(2E. 14) w =_ rec(ul,. .P., P)ESO(Xl, ,J xS1, ,Sn1, 

where SO(X1,...xk) is balanced in X1,...Xk and no xi occurs in S. ..Sn; then w is 
balanced in X 1, **Xk. 



THE FORMAL LANGUAGE OF RECURSION 1243 

Proof. (1) is trivial, using R1-R3. To prove (2), let 

w(xj) - rec(u,.. .,p)[s0(x)1, t2 . tk) n] 

_rec(Ul, - . . . Pn)[SO(Xl), S1 ,** Sn] 

be a substitution instance of w, assume t1 is not immediate and compute: 

w(tj) rec(ul, *** PA)So041), * * * , Sn] 

'frec(ul, ...,pn)[rec(r)[s0(r( )),t1],. ,s] by (2D.17) and hyp. 

~f re~,U1, . ,Pn)[so(r( )), ti,* , Sn]byR 

`%-, rec(ul,.. ., Pn, r)[so(r( )),A *,Sn , ti] by congruence 
%-,f rec(r)[rec(uj,.. .,pn)[s0(r( )),.. .,sjt1] by R4 

`f rec(r)[w(r( )), tjl] 

A similar computation works for the case of a A-term A(u)t1. 
It follows from this result that the term 

(Y(P)t)(X1, * * , Xk)=- rec(ul, * * , Uk, P)[P(Xl, ... Xk), t(U1,. , Uk, p)] 

which defines naturally the "least fixed point" of t is balanced in the basic variables 
x1, . . ., Xk. If the variable p does not occur in t, then (,u(p)t)(x1, .. ., Xk) is a balanced 
term with exactly the same denotation as t and very nearly the same "intension". 

Fact 2E. 15. Assume that w(x) is not immediate in the full context and balanced in 
the sequence of variables x X1,... , Xk, and suppose the function constant f does not 
occur in w(x) and is typed so that f[x] is a term. Then for any two terms t1(f), t2(f), 

t1(f) -E t2(f) =*tl(A(X)W(X)) -E t2(A(X)W(X)), 

assuming that the indicated substitutions are free. 
PROOF. By (2D.12), it is enough to show 

t1(f) __E t2(f) =*tl(A(X)W(X)) -E t2(A(X)W(X)), 

which we do by induction on R1-R8. We will consider some of the typical cases, 
labelled (i) for Ri. Notice that if t(f) is not immediate in E, then t(A(x)w(x)) is also 
not immediate in E this is because in the worst case t(f) _ f[y] and then 
t(A(x)w(x)) _ w(y) which is not immediate by hypothesis. 

Case 1. Suppose 

p(d(f), t(f), b(f)) *E rec(r)[p(d(f), r( ), b(f)), t(f)] 

by R1, so that t(f) is not immediate in E; but then t(A(x)w(x)) is also not immediate 
in E, so R1 gives again 

p (a (A (x) c0)(x)), t (A(x) w(x)), RA (x) w(x))) 

yE rec(r) [ p(a-(A(x)w(x)), r( ), b(A(x)w(x))), t(A(x)oc)(x))]. 

Cases 2,3. These are handled exactly as 1, except when the f in the application of 
the rule is the same as the constant for which we are substituting. To consider a 
notationally simple subcase of this, suppose 



1244 YIANNIS N. MOSCHOVAKIS 

f [a, A(u)t(f)] *E rec(u, r)[f [a, r], t(f)] 

by R3, so we must prove 

w (a, A (u) t(A (x) w(x)))ME rec(u, r) [w(a, r), t(A(x) w(x))]; 

this is true because w is balanced. 
Case 5. Considering a notationally simple case again, suppose 

rec(u, p) [to(f), rec(v, q) [so(f), sl(f)]] +E rec(u, p, u, v, r)[to(f), so(f), s* (f)], 

where the superscripts * indicate the appropriate substitutions. Assuming that the 
substitution f/)(x)w(x) is free in these terms, the bound variables u,p,v,r do not 
occur in w(x), and it is clear that the substitution produces another instance of R5. 

It is a bit simpler to prove the corresponding result for replacement "inside". 
Fact 2E.16. Suppose w1(x), w2(x) are both balanced in Xl,... ,Xk and not 

immediate; then for every term t(f) such that f[x] is well-formed and the indicated 
substitutions are free, 

W1(X) -E W2(X) -: t(A(X)Wl(X)) ME t(A(X)W2(X))- 

The proof is by induction on the term t(f) and we will omit it, since in the only 
interesting case, when t(f)=f [x], the argument is almost identical to that in Case 3 
above. 

THEOREM 2E.17 (Intensional A-replacement). If W1(x), W2(x) are both balanced in 
the sequence of variables X X1,... ,Xk and not immediate and if t1(f), t2(f) are 
arbitrary terms such that f [x] is well formed, and the indicated substitutions are free, 
then 

tl(f) YE t2(f) => tl(A(X)Wl(X)) -E t2(A(X)W2(X)). 

PROOF. By (2E. 15) and (2E. 16), 

tl(f) ME t2(f) => tl(A(X)Wl(X)) -E t2(X(X)Wl(X)) & t2(Q(X)wl(x)) 'E t2(Q(X)W2(X)) 

and the theorem follows immediately. H 
This replacement theorem makes it possible to introduce into FLR balanced, non- 

immediate definitions, consistently with the deduction calculus and the contem- 
plated intensional interpretations. If w(x) is balanced and not immediate (in the 
full context), we can add to the signature a new function constant f, which will be 
interpreted as a definition f[x] := w(x); now all the reductions in the extended lan- 
guage project to reductions in the base language under the replacement f/A(x)w(x). 

3. ALTERNATIVE DENOTATIONAL SEMANTICS 

Up till now we have introduced only one kind of denotational semantics for FLR, 
on functional structures. In this part we will consider alternative choices, both on 
functional structures and on richer structures in which we can model dependence on 
a state and the execution of side effects. The main aim is to establish the "robustness" 
of the reduction calculus under a wide variety of interpretations, and also to 
illustrate how quite arbitrary (sequential) algorithms can be expressed in FLR. 



THE FORMAL LANGUAGE OF RECURSION 1245 

?3A. Call-by-name recursion. In defining the denotation of terms in functional 
structures in ?1D, we adopted without discussion the so-called (fully parallel) call- 
by-value interpretation of recursive definitions. In fact this is the most natural 
interpretation of recursion from the logical point of view, and in [Moschovakis alg] 
we will argue that it is the correct interpretation to take when we want to understand 
the "algorithmic meaning" of terms. 

On the other hand, there are other ways to understand recursive definitions, and 
at least one of them-call-by-name recursion-has been used extensively in the 
interpretation of programming languages. There are many reasons for this, 
including the fact that call-by-name is a natural understanding of recursion in the 
context of "symbolic computation"; it was adopted as the "official" semantics for 
recursion in the Algol 60 report; and it is the most direct way to understand 
recursion in the A-calculus. 

In this section we will prove (in outline) that FLR reduction preserves denotation 
under a call-by-name interpretation of recursion on functional structures. 

To illustrate the difference between call-by-value and call-by-name recursion, 
consider the following standard example which is attributed to Morris in [Manna 
1975]; f is defined on the integers, by the recursion 

f(n, m):= if n = 0 then 1 else f(pred[n], f(n, m)). 

On our understanding of recursive definition, trivially, 

f(n, m) - if n = 0 then 1 else undefined, 

but the following plausible computation seems to prove that f(1, 1) - 1: 

f(1, 1) if 1 = 0 then 1 else f(pred[1],f(1, 1)) 

(*) z f(pred[1],f(1, 1)) 

(**) - if pred[1] = 0 then 1 else f(pred[pred[1]], f(pred[1],f(1, 1))) - 1. 

What's "wrong" here is that the term f(1, 1) on the right in (*) should be evaluated 
before we go to (**), and any attempt to compute it will lead to an infinite loop; 
nevertheless, there is an intrinsic logic to this computation which is captured by the 
definition below. 

For the remainder of this section we fix FLR for a specific signature z, and we fix a 
functional structure A of signature z. 

DEFINITION 3A.1. An environment is any finite set a of "bindings" of the form 

(3A.2) p A(u)t(u)5 

which are correctly typed, i.e. the type of the pf variable p on the left is the same as 
the type of the A-term on the right; we say that p is bound to t(u) in a by (3A.2), and we 
assume that no pf variable is bound to two different terms in an environment. 

In the intended use of this notion, p will be bound to t(u) if it is being defined 
recursively by t(u), so that in fact p may occur free in t(u)-as can other pf's, which 
are being defined by the same simultaneous recursion. There is an obvious 
relationship between environments and the "contexts" we used in the reduction 
calculus, but these two notions are used in quite different ways and should Inot be 



1246 YIANNIS N. MOSCHOVAKIS 

confused. In (vague) programming terms, we use the context in compiling, to know 
which expressions are immediate and should not be reduced any further; we use the 
environment in computing (using call-by-name recursion) to know which term we 
should evaluate when the computation calls for some value of p. 

DEFINITION 3A.3. We will define a partial function 

nval: Expressions x Assignments x Environments - Objects of A, 

such that nval(t, 7r, a) has the same type as the expression t, whenever it is defined 
and it is always defined if t is a pf term. The definition is by recursion, so that nval will 
be the least partial function which satisfies the conditions NVI-NV5 below, in the 
partial ordering 

f < g <- (V terms t, 7r, x)[f(t, 7r, a) - w =* g(t, 7r, a) - w] 

& (V pf terms t, ir, x)[f(t, 7r, a) c g(t, ir, a)]. 

NV1. If x is a basic variable or a pf variable not bound in the environment 0C, then 

nval(x, 7r, ac) -_ 7r(x); 

if x is a pf variable bound to t(u) in oc, then 

nval(x, rc, oc) _ nval(A(u)t(u), rc, oc). 

NV2. If p is not bound in oc, then 

nval(p(tl,.. ., tJ), it, Oc) i t(p)(nval(tlitc),... , nval(t, it, oc)); 

if p is bound to t(ul,.. ., uJ) in ct, then 

nval(p(t1,... , tn), it, Oc) - nval(t(tl, ... , t), it, OC). 

NV3. nval(A(u)t, ir, c) = A(u)nval(t, ri[u/u], c), where it[u/u] is the assignment 
which agrees with it on all variables, except on the basic variables in the list u, on 
which it is defined so that it assigns u to u. 

NV4. nval(f [tl,. . ., tn], it, 0c) 3 (f)[nval(tl, 7c),..., nval(tn, it, 0c)]. 

NV5. If t -rec(ul,pl,... ,un,pP)[tOtl,. .tn], then 

nval(t, ir, c) nval(to,ir, C u {Pi X(u1)t1,. Pn (Un)tnl) 

REMARK. We will refer to proof by induction on the definition of nval below, 
without making this precise. There are several well-known ways to do this, using the 
least-fixed point characterization of nval or reading NV1-NV5 as the clauses of a 
(possibly transfinite) recursive definition (which defines this fixed point) and 
understanding each proof as an induction on the ordinals. 

We call two expressions (call-by-name) equivalent if they take the same value for 
all assignments and in all environments, 

(3A.4) S "'nden t # (VA, it in A, cx)[nval(s, ir, c) - nval(t, ir, cx)]. 

The (absolute, call-by-name) value of an expression t relative to an assignment it is 
computed in the empty environment, i.e. it is set equal to nval(t, it, 0). 

We need to establish first the basic replacement properties of call-by-name 
recursion, which are a bit more subtle than those of (1D.4) because of the interplay 



THE FORMAL LANGUAGE OF RECURSION 1247 

between assignments and environments. Corresponding to the operation 7t[x/a] 
which changes the assignment X just on the basic variable x by assigning a to it, we 
associate with each environment ot, each basic variable x and each term s of the same 
type as x the environment ac[x/s], by replacing each binding p _ A(u)t(u, x) in o by 
the binding p =A(u)t(u, s). 

THEOREM 3A.5 (Replacement properties). (1) For each expression s(x) in which the 
basic variable x may occur free, for each term t of the same type as x and in which x 
does not occur, and for each environment a, 

(3A.6) nval(s(t), 7r, afxlt]) - nval(s(x), 7r[xlnval(t, 7r, a[xlt])], a). 

(2) For each expression s(x) in which the basic variable x may occur free, for each 
term t of the same type as x in which x does not occur, and for each environment a, 

(3A.7) nval(s(t), 7r, a [x/t]) - nval(s(r( )), 7a, a [xlr( )] u Jr _= A( ) tl)5 

where r is a "fresh" pf variable (which does not occur in s(x) or a). 
(3) For every three terms S1, S2, t, if the pf variable p is not bound in the environment 

I, then 

(3A.8) S1 -.den S2 '~, nval(t, a u I p A(u)s 1 ) - nval(t, a u { P--AMS2} 

OUTLINE OF THE PROOF. Each of the claims is proved by induction on the 
definition of nval, taking cases on the form of the term s(x) in (1) and (2), and t in (3). 

The technical versions of these replacement results are formulated so that their 
proofs are "smooth"; in practice we apply mostly simplified versions when x does 
not occur in s(x) or in oc: 

(3A.9) nval(s, 7r, a [x/t]) - nval(s, 7i [x/nval(t, ir, ot [x/t])], a), 

(3A.10) nval(s(t), i, x) -nval(s(x), i[x/nval(t, ir, c)], o) (x not in o), 

(3A.1 1) nval(s(t), it, x) - nval(s(r( )), it, o u {r _ A( )t}) (x not in a). 

THEOREM 3A.12. For each functional structure A, assignment it into A, context E 
and environment a, 

S "I t =>` S e"rden t, 

OUTLINE OF THE PROOF. We show by induction on RI-RI1 that both -+E and -E 

preserve call-by-name values. 
Suppose first that by RI 

PWt BE rec(r)[p(r( )), t] 

where p is bound to s(u) in a. Skipping the irrelevant assignment it, we compute: 

nval(rec(r)[p(r( )), t]) nval(p(r( )), o u {r _( )t}) by definition 

nval(s(r( )), o u {r X( )t}) by definition 

nval(s(t), oC) by (3A. 1 1) 

nval(p(t), a) by definitiont 



1248 YIANNIS N. MOSCHOVAKIS 

Similar (or trivial) arguments establish the result for all the reduction rules except 
R8, R4 and R5. We outline the argument for R8 and a notationally simple subcase of 
R5. 

For R8, compute (skipping the assignment 7t again), 

nva1(rec(uj,. *,pj)[so Si'. 0 SJ] 00 

- nval(so, 0 u {Pi (u1)s,. .Si 

- nval(so, 0 u {Pi )4u1)t1,. . 
by ind. hyp. and n applications of (3A.5), (3) 

- nval(to, 0 u {Pi 4u1)...D 
by ind. hyp. 

- nval(rec(ul,..., p)[tO, t,*...* tn], 0). 

Finally suppose that, by R5, 

rec(u, p)[to, rec(v, q)[so(u, p, q), s1 (u, p, v, q)]] 

_E rec (upuvr) [to, SO(u p, r(u, *)), s 1(u, p, v,r(u,*)] 

By definition, the value of the two sides of this reduction which we must prove 
equal are 

LHS - nval(to, a u {p _(u) rec(v,q)[so(u,p,q),sj(u,p,v,q)]}), 

RHS - nval(to, oa u {p _ (u)so(u, p, r(u, *)), r =_ A(u, v)sj~u, p, v, r(u, *))), 

where we have suppressed the dependence on the assignment 2 which does not enter 
the argument. 

Since the term to is completely arbitrary in these two expressions, the idea is to 
prove that LHS and RHS are equal (under the hypotheses we have accepted) for 

all to, by induction on the definition of nval, taking cases on the form of to. In this 
proof, the only nontrivial case is when to p(w), where p is bound in the environ- 
ments above and w is some term. For this case, we can compute (again skipping 7t): 

LHS nval(p(w), a u { p - (u) rec(v, q)[so(u, p, q), s1 (u, p, v, q)]}) 

nval(rec(v, q)[so(w, p, q), s1 (w, p, v, q)], 

a u {p p- (u)rec(v, q)[so(u, p, q), sl(u, p, v,q)]) 

nval(so (w, p, q), oc u { q A i(v) s (w, p, v, q), 
p A (u) rec(v, q)[so(u, p, q), s1 (u, p, v, q)] 

nval(so(w, p, q), a u {q _(v)sl (w, p, v, q), 

p _(u)so(u, p, r(u, )), 
r A (u, v)s 1 (u, p, v, r(u, *))}), 

where the last equality is by the induction hypothesis; and for the other side, 

RHS t nval(p(w), o u bp c_ A(u)so(u, p, r(u, s)), rtht-s fu, p, v, r(u, *)q) 
- nval(so(w, p, r(w, *)), oa u {p--A(u)so(u, p, r(u, *)), r _ (u, v)si(u, p, Iv, r(u,*)} 

Thus, the proof will be complete if we can show that for all terms s(u, q) and w, for 



THE FORMAL LANGUAGE OF RECURSION 1249 

all environments a in which p, q, r are not bound and with the obvious assumptions 
on the types, 

nval(s(u, q), o u {q =_ (v)s1 (u, q), p _ 4(u)so(u, r(u, *)), r X(u, v)sl (u, r(u, *))}) 
-- nval(s(u, r(u, *)), oa u { p =_(u)so(u, r(u, )), r_ (u, v)sl(u, r(u, *)) 

This is easily proved by induction on the definition of nval again, where the only 
nonimmediate cases when s(u, q) _ q(t) or s(u, q) p(t) can be checked directly. -- 

The definition of nval suggests the classical way of reducing call-by-name 
recursion on a functional structure A to call-by-value recursion on the expansion 
A*, which has the set T of terms as an additional basic set and enough added given 
functions so that the usual syntactic operations on terms become recursive. 

?3B. States and functions with side effects. Consider the following program 
G(m) (in a pidgin Pascal-like programming language) which depends on the formal 
integer parameter m, so that it defines a function G: 

begin; 

n:= m; w:=1; 
time( ); 

while (w 0O) {w:= F(n); print(w); n:= n + 1;} 
return (n); 

end; 

Here F(n) is another program which can be called with a value n for the formal 
integer parameter n and returns the value F(n) of some (total) function on the 
integers; print(w) prints the integer w on the terminal in some canonical form; and 
time( ) is the usual "system function" which prints on the terminal the current time. 

An execution of G(m) on the integer m will first print the time, and then print the 
successive values F(m), F(m + 1),... of the function F until some F(n) = 0; it will 
finally "return" this n- the least root of F above m as its value. Thus the complete 
denotation of G(m) is a function which takes an integer m and (part of) the state of the 
world (the time) as argument, and returns as value a (finite or infinite) string which 
begins with the object print the time and is followed by changes to the state (the 
storage of the successive values of F in the location w), acts of communication (the 
printing of the values of F) and finally (possibly) the "return" of an integer value, if 
in fact F has a root above m. 

Now this is a fairly complex object, not easy to deal with. It turns out that it is 
more convenient-and more in accord with programming terminology to think 
of the denotation of G(m) as basically a partial function on the integers, which 
however depends on the state and has side effects. Here we will use a very special case 
of such functions with state dependence and side effects, which is suitable for 
modelling deterministic, sequential algorithms. 

DEFINITION 3B. 1. A (sequential) communicating universe is a triple W = (f, 4, -/), 
where 4 is a pure universe, f is a nonempty set, the set of states, and v/ is an 
arbitrary set, the set of acts, so that each act a induces a transformation on the' states 



1250 YIANNIS N. MOSCHOVAKIS 

which we will denote by the same symbol a: f -* Y. The set of (sequential, side) 
effects of W is & = all finite and infinite sequences from Al, partially ordered by the 
relation 

e1 < e2 e1 is an initial segment of e2. 

We will also consider the set of states Y as a poset, by imposing the flat partial 
ordering = on it. 

In a toy example, we can take Y to be the set of all pairs (v, i) of integers, where we 
think of v as the (integer) value stored in some "location" V and i as the number of 
times the system has received "input" from some string of integers; typical acts now 
are store m in V which changes (v, i) to (m, i), getinput which changes (v, i) to (v, i + 1) 
and ring the bell which does not alter the state. 

The basic objects and individuals of W are those of 4, as defined in (1B.2), and the 
other typed objects of W are defined by the following recursive clauses. 

co2. An object of pf type (U- - w-) in W is a pair p = (Pe, pv), where the value part of 

p, namely pv: Y x U - W, is a partial function with Y the set of states and U, W the 
individual and basic spaces of respective types u-, w; the (side) effect part of p is a 
(total) function Pe: Y x U -+ & which assigns a sequential side effect to each state s 
and each u E U; and the two parts are related by the condition 

(3B.2) pJ(s, u), ,- Pe(S, U) is finite. 

We will call these "communicating partial functions with state dependence and 
sequential side effects", cpf's for short, and we impose the following partial order on 
the set CP(U, W) of all of them: 

(3B.3) p < q (Vs, U)[Pe(S, u) < qe(s, u) 
& PJ(s, U)1 -, (pe(S, u) = qe(s, u) & pv(s, u) _ qv(s, u))]. 

If pv(s, u)J, then by the finiteness condition (3B.2) we know that the effect 

(3B.4) Pe(S, U) = (a1,.. Ia.) 

is a finite sequence of actions which then induces a specific transition on the state, 

(3B.5) p*(s,u) - an(a.- l (al(s)) ); 

by convention, this operation p * (s, u) is defined exactly when p(s, u) returns a 
value-i.e. when pv(s, u)J. 

It is clear that in the degenerate case, where there is only one state and the set of 
acts is empty, then every cpf (Pe, pv) can be identified (essentially) with the partial 
function pv. 

co3. As in the pure case, points are tuples of basic objects and objects of pf type- 
cpf's in this case. Each product space X = x ... x Xn carries the product partial 
order of the canonical partial orders on its factors. 

co4. An object of function type (x- -C w) in W is any pair f = (fe, fv), where the 
value part off f: fY x X W, is a monotone, partial function; the (side) effect part 
of f is a monotone total function fe: Y x X -* S; and the two parts are related by 
the condition 

(3B.6) fv(s, x) =:> fe(s, x) is finite. 



THE FORMAL LANGUAGE OF RECURSION 1251 

As with cpf's, this finiteness condition insures that if f,(s, x)J, then the computation 
of f(s, x) induces a specific transition on the state, which we will denote again by 

(3B.7) f *(s, x) - a.(a. -1.. (a 1(s)) ..), 

where fe(s, x) - a, an; and if there is only one state and no acts, then f can be 
identified (essentially) with f,. 

From the mathematical point of view, these functions with side effects are of 
course just ordinary functions which happen to take their values in somewhat com- 
plex sets. The separation of the value into a "side effect" and a (logical or mathe- 
matical) "value" is useful because it helps the intuition and makes it much easier to 
define various natural operations on these objects. 

Suppose for example that we define a cpf p in terms of given cpf's q, r', r2 by the 
substitution 

(3B.8) p(u, v) - q(r 1 (u) r2(V)); 

the precise version of this is 

(3B.9) Pe(5,U v) = rl(s,u) * r2(r1 * (s, u), v) 

* qe(r2 * (r' * (s, u), v), r (s, u), r2(r' * (s, u), v)), 

(3B.10) P(s, u, v) qV(r2 * (r' * (s, u), v), r1 (s, u), r2(r' * (s, u), v)), 

where * denotes "non-strict" concatenation of sequences, i.e. 

u * undefined -u , u is infinite => u * v - u. 

This looks messy, but it gives the obvious intuitive meaning of the sequential (from 
left to right) computation of q(r'(u), r2(v)) at a given state s: compute first r1(u) in the 
state s, executing all the side effects; if this computation terminates, compute r2(v) in 
the new state which resulted from the first computation, again executing all the side 
effects; if this too terminates, finally compute q on the two returned values. 

DEFINITION 3B. 1 1. A (sequential) communicating functional structure of signature 
z = (B, S, d) is a system 

(3B.12) A = (9, , 

where (f, 4, -/) is a communicating universe as above and E = {Y{f): f E S} is a 
family of communicating functions as in co4, so that the type of E(f) is d(f). 

DEFINITION 3B.13. Denotational semantics. For a fixed structure A as in (3B.12) 
we define a total function 

vale: f x Expressions x Assignments - 

and a partial function 

valve: f x Expressions x Assignments - Objects of A, 

by copying almost literally the definition of the val partial function in (1D.2). 
Assignments are defined exactly as in (1D.2), clauses V2 and V4 are modified to take 
account of the state dependence and side effects as in (3B.9) and (3B.10) above, and 
the interpretation of recursion is by least fixed points, exactly as in (1D.2), this time 
appealing to somewhat different "familiar methods" for establishing that least fixed 
points exist. 



1252 YIANNIS N. MOSCHOVAKIS 

In the same way, following (3A.3) we define a total function 

nvale: f x Expressions x Assignments x Environments -* & 

and a partial function 

nvalv: f x Expressions x Assignments x Environments - Objects of A, 

by introducing the same changes in NV2 (when p is not bound in the environment) 
and in NV4. 

THEOREM 3B.14. (1) For each communicating functional structure A, state s of A, 
assignment 7t into A and context E, 

t ~1E t2 -- vale(S, t1, A) = vale(S, t2, 7) & val(s, t1, 7t) - val(s, t2, t). 

(2) For each communicating functional structure A, state s of A, assignment it into 
A, environment a and context E, 

tl -E t2 -- nvale(s, t1, it, 0) = nvale(s, t2, it, 0) & nvalv(s, t1, it, cx) nvalv(s, t2, it, x). 

The proof of (1) is by a minor modification of the proof of (2B.4), and (2) is proved 
by similarly modifying the proof of (3A.12). No new ideas are needed and we will 
omit the details. -H 

REFERENCES 

S. A. GREIBACH [1975], Theory of program structures: schemes, semantics, verification, Lecture Notes 
in Computer Science, vol. 36, Springer-Verlag, Berlin, 1975. 

S. C. KLEENE [1952], Introduction to metamathematics, Van Nostrand, Princeton, New Jersey, 1952. 
Z. MANNA [1975], Mathematical theory of computation, McGraw-Hill, New York, 1975. 
J. MCCARTHY [1960], Recursive functions of symbolic expressions and their computation by machine. 

Part I, Communications of the Association for Computing Machinery, vol. 3 (1960), pp. 184-195. 
R. MILNER [1980], A calculus of communicating systems, Lecture Notes in Computer Science, vol. 92, 

Springer-Verlag, Berlin, 1980. 
Y. N. MOSCHOVAKIS [1984] (ARFTA), Abstract recursion as a foundation of the theory of algorithms, 

Computation and proof theory, Lecture Notes in Mathematics, vol. 1104, Springer-Verlag, Berlin, 1984, 
pp. 289-364. 

[alg], A mathematical modeling of pure, recursive algorithms, to appear in the proceedings of the 
Logic at Botik '89 meeting (Pereslavl-Zalessky, July 2-9, 1989). 

D. PARK [1980], On the semantics of fair parallelism, Abstract software specifications, 1979 Copenhagen 
winter school, Lecture Notes in Computer Science, vol. 86, Springer-Verlag, Berlin, 1980, pp. 504-526. 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF CALIFORNIA AT LOS ANGELES 

LOS ANGELES, CALIFORNIA 90024 


	Article Contents
	p. 1216
	p. 1217
	p. 1218
	p. 1219
	p. 1220
	p. 1221
	p. 1222
	p. 1223
	p. 1224
	p. 1225
	p. 1226
	p. 1227
	p. 1228
	p. 1229
	p. 1230
	p. 1231
	p. 1232
	p. 1233
	p. 1234
	p. 1235
	p. 1236
	p. 1237
	p. 1238
	p. 1239
	p. 1240
	p. 1241
	p. 1242
	p. 1243
	p. 1244
	p. 1245
	p. 1246
	p. 1247
	p. 1248
	p. 1249
	p. 1250
	p. 1251
	p. 1252

	Issue Table of Contents
	The Journal of Symbolic Logic, Vol. 54, No. 4 (Dec., 1989), pp. 1121-1544+i-viii
	Volume Information [pp.  i - vii]
	Front Matter
	The Roots of Contemporary Platonism [pp.  1121 - 1144]
	Coding Over a Measurable Cardinal [pp.  1145 - 1159]
	On Hyper-Torre Isols [pp.  1160 - 1166]
	Descriptive Set Theory Over Hyperfinite Sets [pp.  1167 - 1180]
	Near-Equational and Equational Systems of Logic for Partial Functions. II [pp.  1181 - 1215]
	The Formal Language of Recursion [pp.  1216 - 1252]
	Definability in Terms of the Successor Function and the Coprimeness Predicate in the Set of Arbitrary Integers [pp.  1253 - 1287]
	Recursively Enumerable Sets Modulo Iterated Jumps and Extensions of Arslanov's Completeness Criterion [pp.  1288 - 1323]
	Some Restrictions on Simple Fixed Points of the Integers [pp.  1324 - 1345]
	A Proof of Morley's Conjecture [pp.  1346 - 1358]
	The Classification of Excellent Classes [pp.  1359 - 1381]
	Large Resplendent Models Generated by Indiscernibles [pp.  1382 - 1388]
	Algorithmic Information Theory [pp.  1389 - 1400]
	The Consistency Problem for Positive Comprehension Principles [pp.  1401 - 1418]
	Interpolation in Fragments of Intuitionistic Propositional Logic [pp.  1419 - 1430]
	The Number of Pairwise Non-Elementary-Embeddable Models [pp.  1431 - 1455]
	The Equivalence of the Disjunction and Existence Properties for Modal Arithmetic [pp.  1456 - 1459]
	A General Treatment of Equivalent Modalities [pp.  1460 - 1471]
	Reviews
	untitled [pp.  1472 - 1477]
	untitled [pp.  1477 - 1479]
	untitled [pp.  1479 - 1480]
	untitled [pp.  1480 - 1481]
	untitled [pp.  1481 - 1483]
	untitled [pp.  1483 - 1484]
	untitled [pp.  1484 - 1485]
	untitled [pp.  1485 - 1486]
	untitled [p.  1487]
	untitled [pp.  1487 - 1489]
	untitled [p.  1489]
	untitled [pp.  1490 - 1493]
	untitled [pp.  1493 - 1494]
	untitled [pp.  1494 - 1496]
	untitled [pp.  1496 - 1497]

	Fifth Southeastern Logic Symposium [p.  1498]
	Association for Symbolic Logic [pp.  1499 - 1535]
	Index of Reviews [pp.  1536 - 1541]
	Authors of Reviews [p.  1542]
	Notices [pp.  1543 - 1544]
	Errata [p.  viii]
	Back Matter



