Recursion and Complexity

Yiannis N. Moschovakis

Department of Mathematics
University of California, Los Angeles, CA 90095-1555, USA
and Department of Mathematics
Graduate Program in Logic, Algorithms and Computation (MIIAA)
University of Athens, Athens, Greece
ynm@math.ucla.edu

My purpose in this lecture is to explain how the representation of algorithms
by recursive programs can be used in complexity theory, especially in the deriva-
tion of lower bounds for worst-case time complexity, which apply to all—or, at
least, a very large class of—algorithms. It may be argued that recursive programs
are not a new computational paradigm, since their manifestation as Herbrand-
Godel-Kleene systems was present at the very beginning of the modern theory
of computability, in 1934. But they have been dissed as tools for complexity
analysis, and part of my mission here is to rehabilitate them.

I will draw my examples primarily from van den Dries’ [1] and the joint work
in [3, 2], incidentally providing some publicity for the fine results in those papers.
Some of these results are stated in Section 3; before that, I will set the stage in
Sections 1 and 2, and in the last Section 4 of this abstract I will outline very
briefly some conclusions about recursion and complexity which I believe that
they support.

1 Partial Algebras

A (pointed) partial algebra is a structure of the form
A=(A,0,1,8) = (A,0,1,{¢*}sca), (1)
where 0, 1 are distinct points in the universe A, and for every ¢ € @,
¢t A" = A

is a partial function of some arity n associated by the signature @ with the
symbol ¢. Typical example is the structure of arithmetic

N = (N,O7 1a =+, ')7

which happens to be total, i.e., the symbols ‘=", ‘+’ and ‘-’ are interpreted by total
functions, the characteristic function of the identity in the first case, and addition

* This is an outline of a projected lecture, in which I will refer extensively to and draw
conclusions from results already published in [2]; and to make it as self-contained as
possible, it has been necessary to quote extensively from [2], including the verbatim
repetition of some of the basic definitions.



and multiplication for the other two. Genuinely partial algebras typically arise
as restrictions of total algebras, often to finite sets: if {0,1} C B C A, then

A fB = (B,O,l,{qu rB}‘i’G@)a
where, for any f: A" — A,
fIB(x1,...,2p) =w <= Z1,...,Zp,w € B& f(z1,...,2,) = w.

An imbedding v : B — A from one partial algebra into another (of the same
signature) is any injective (total) map

t:B— A,
such that ¢(0) =0, ¢(1) =1, and for all ¢ € ¢, x = (21,...,2,),w in B,
if P (x) = w, then ¢4 (s(x)) = 1(w),

where, of course, (21, ...,z,) = (t(x1),...,t(zy,)). If the identity ¢(x) = x is an
imbedding of B into A, we call B a partial subalgebra of A and write B C, A.
Notice that the definitions here are in the spirit of graph theory, not model
theory, i.e., we do not insist that partial subalgebras be closed under the given
operations; in particular, for any B C A,

({07 1}7__) gp A TB gp A7

where ({0,1,}, ——)) is the trivial algebra with universe {0,1} and all symbols
in @ interpreted by completely undefined partial functions.

For any X C A and any number m, we define the set G,,,(X) generated in
A from X in m steps in the obvious way:

Go(X) = {0,1} UX, )
Gmi1(X) = Gn(X) U {4 (@) | T € Gr(X), ¢ € D,¢4() | }.

Notice that if X is finite, then each G,,(X) is a finite set. The set generated by
X is the union

G(X) =U nenGm(X),
and it determines the partial subalgebra A[G(X) of A generated by X.

The Complexity of Values
Suppose now that A is a partial algebra as in (1) and
x: A" — A

is an n-ary function on A which we want to compute from the givens {¢}sca
of A—and nothing else. It is natural to suppose that this cannot be done unless



each value x(x) can be generated from the arguments & by successively applying
the givens, i.e.,

x(x) € G(z) (xeA");
and that if this holds and we set

gy (x) = the least m such that x(x) € G (x),

then any algorithm which computes x(z) will need at least g, (x) steps. This
can be argued very generally, and it can be used to derive hard lower bounds for
all algorithms which compute x(x) from specific givens. Van den Dries used it
in [1] to derive a triple logarithmic lower bound for the function

ged(x, y) = the greatest common divisor of x and y (z,y € Nz >y > 1)

from addition, subtraction and division with remainder, i.e., the two functions
iq(z,y) = ¢, rem(z,y)=r,
where ¢ and r are the unique natural numbers such that
r=yq+r 0<r<y.

His proof introduced some ingenious ideas from number theory (which we will
mention further down), and the result was at least a first step in an effort to
establish that the classical Euclidean algorithm is optimal; the Euclidean, of
course, has single logarithmic complexity, and it uses only the remainder function
rem(z,y).

The big advantage of the complexity function g,(x) is that lower bound
results about it apply to all algorithms, whatever algorithms are. On the other
hand, it cannot be used to establish lower bounds for decision problems, where
the function that we want to compute takes on only the values 0 or 1: for that
we need to make some assumptions about algorithms, which we do next.

2 Recursive Programs

The terms of the language L(®P) of programs in the signature @ are defined by
the recursion

E:=0|1|v;| ¢(Er,...,En) | p}(En,...,Ey,) |if (Eg =0) then E; else Es,

where v; is one of a list of individual variables; pl is one of a list of n-ary (partial)
function variables; and ¢ is any n-ary symbol in @. These terms are interpreted
as usually in any @-partial algebra A and relative to any assignment 7 which
assigns some 7(v;) € A to each individual variable v;, and some n-ary partial
function 7(p}) : A — A to each function variable p}:

[E](7) = [E](A,w) = the value (if defined) of E in A for the assignment ;



and if the variables which occur in E are in the list (X1,...,Xn, Py, .-, Pym), then
E defines a (partial) functional

FE($7p) = [[E]]({(Xh"'>xn7p17"'7pm) = 337])}) (3)

which is monotone and continuous.
A recursive (or McCarthy) program of L(®P) is any system of recursive term
equations
poz(m) = Ey

1(z1) = E1
. pa( ): ()

pi(xK) = Ex

such that ps,p1,...,px are distinct function variables; py,...,px are the only
function variables which occur in Ey, ..., Ex; and for each i, the free, individual
variables in each E; are in the list x;. The term Ej is the head of «, the remaining
terms are its body, and we may describe the mutual recursive definition expressed
by a by the simple notation

a = EO where {pl = Ela-~-7pK = EK}

The function variables p1, ..., px are bound in this expression.
To interpret a program « on a d-structure A, we observe that its parts define
the system of mutually recursive equations

pa(m) - FEo(m7p17"'apK)7
pl(wl) = FEl(wlapla"'7pK)7

pK(m) - FEK(mK7pla' .. apK)v

using (3), which by the usual methods has a set of least, mutual solutions

]_)aa]_)la' aﬁK7

we then let
[o] = [a](A) =P, : A" = A,

so that the partial function “computed” by « on A is the component of the tuple
of least solutions of the mutual recursion determined by « which corresponds to
the head term.

A partial function f : A™ — A is A-recursive if it is computed by some
recursive program.

Except for the notation, these are the programs introduced by John Mec-
Carthy in [6]. McCarthy proved that if Ny = (N,0,1,S,P) is the simplest
structure on the natural numbers with just the successor and the predeces-
sor operations as given, then the N g-recursive partial functions are exactly the
Turing-computable ones. To justify the connection with computability in general,



one must of course explain how recursive programs compute partial functions, in
effect to construct an implementation of L(®) on an arbitrary partial P-algebra
A; but it is well-known how to do this (in many ways), and we will not be
concerned with it.

We note two basic lemmas, whose proofs are very easy:

Lemma 1 (Imbedding). If «t : B — A is an imbedding from one ®P-algebra
into another, then for every ®-program a and all x,w € B,

if [o](B,x)=w, then [a](A,x)) = (w).
In particular, if B C, A, then for every ®-program o and all ©,w € B,
if [o](B,x)=w, then [a](4,x)=w.

Lemma 2 (Finiteness). For every ®-algebra A, every recursive ®-program o
and all z,w € A, if [o](A,x) = w, then there exists some m such that

w € Gp(xz) and [a](ATGn(x),z) = w.

The Finiteness Lemma expresses the simple proposition that computations
are finite, and so they live in some finite subset G,,(x) of A generated by the
input; but it leads directly to the next, fundamental notion of complexity.

The Basic (Structural) Complexity

For each recursive program c«, each partial algebra A, and each x such that
[a](x) ], we set

Cy(x) = the least m such that [a](A[|Gn(x), ) = [o](x).

Roughly speaking, the basic complexity C,(x) measures the minimum num-
ber of nested calls to the givens which is required for the computation of [o](x).
It cannot be realistically attained by any actual implementation of «, but it is
a plausible lower bound for the time complexity of any implementation.

The Finiteness Lemma now yields immediately the key tool for deriving lower
bound results about the basic complexity of recursive programs:

Lemma 3 (The Imbedding Test). Let A be a partial algebra as in (1), sup-
pose that x : A™ — A, and assume that for some x € A™ and some m, there is
an imbedding

t:AlGp(z) — A

such that
x(u(z)) # (x(x));

it follows that for every recursive program o which computes x in A,

Co(x) > m.



3 Two Lower Bound Results About Coprimeness

We quote here from [2] two lower bound results about the relation of coprimeness
xly <= z,y>1& Vd>1)[dtxVdtyl,

which are obtained using the Imbedding Test, Lemma 3.
For the first, let

1
LinO = {:7<7parit}772'a5'a+7;} (5)
where the relations stand for their characteristic functions and
2-(z) =2z, —--(x)=iq(x,2).

Knuth [5] describes the binary algorithm algorithm of Stein which computes
the ged (and hence decides coprimeness) from Ling in logarithmic time.! The
Stein algorithm is optimal among recursive algorithms (up to a multiplicative
constant), because of the following:

Theorem 1 ([2]). If a recursive program o decides the coprimeness relation in
the algebra Ay = (N, Ling), then for all a > 2,

Cyla,a® —1) > % log(a® —1). (6)

1
The proof goes by showing that if m < T log(a2 — 1), then there is an

imbedding
1:AglGpla,a® —1) — A

such that for some A,
t(a) = Xa, t(a®—1) = \a®—1),

so that ¢ carries the coprime pair (a,a? — 1) to a pair of numbers which are not
coprime, and hence C,,(a,a?—1) > m by the Imbedding Test. It is not possible to
describe in this abstract how this imbedding is defined, but it is quite simple. Not
so for the next result—the Main Theorem of [2]—where the same idea is used,
but the relevant imbedding is much harder to define and depends on Liouville’s
Theorem on “good approximations” of algebraic irrationals, cf. [4]:

Theorem 2 ([2]). If a recursive program o decides the coprimeness relation
in the algebra A; = (N,Ling,iq,rem), then for infinitely many coprime pairs
a>b>1,

Cu(a,b) > % log log a. (7)

! This is also specified in [2].



In fact, (7) holds for all coprime a > b > 1 such that

a 1

e _ 2’ —

V2| <5 (8)
(and there are infinitely many such a, b by a classical result).

The target here is the Euclidean algorithm which decides coprimeness in
logarithmic time, and so the theorem is one log short of what is needed to
establish the (plausible) optimality of the Euclidean. But it is as good as any
known lower bound for coprimeness from its givens, and perhaps unique in its
uniformity—it yields the same lower bound, on the same inputs for all recursive
programs.

4 Inessential (Logical) Extensions of Partial Algebras

The next natural question is whether Theorems 1 and 2 also hold for other
“computational paradigms”, for example random access machines. Of course
they do, and by more-or-less the same proofs, adapted to the idiosyncracies of
each model which do not affect the basic, arithmetical facts that enter into the
arguments. Rather than do this one computation model at a time, however, we
look for a general result which might suggest that these lower bounds hold for
all algorithms.

Let A =(A,0,1,{¢A}4ce) be a partial algebra. An inessential extension of
A is any partial algebra

B = (B,0,1,{¢*}sca, (¥ }ycw)

with the following properties:

(IE1) A C B, and A and B have the same 0 and 1;

(IE2) every permutation 7 of A fixing 0 and 1 can be extended to a per-
mutation 72 of B such that for every “new given” 1) = ¢® of arity n and all
T1y...,Tn € B,

ﬂ—Bw(wla"'axn) :w(’/TBxla"'vTrBl'n)' (9)

Here we view each “old given” ¢4 as a partial function on B, undefined when
one of its arguments is not in A.

We might also call these extensions logical, since the property we demand
of the new givens in B is reminiscent (or better: a relativization to the given
algebra A) of Tarski’s logical functions. In any case, Lemma 3 extends directly
(and easily) to them:

Lemma 4 (The Extended Imbedding Test, [2]). Let A be a partial algebra
as in (1), suppose that x : A™ — A, and assume that for some x € A™ and some
m, there is an imbedding

t:AlGp(z) — A
such that

x(u(x)) # o(x(x));



it follows that for every recursive program o which computes x in some inessen-
tial extension B of A,
Co(x) > m.

And, of course, random access machines relative to any set @ of functions on
N can be faithfully represented by recursive programs on inessential extensions
of (N,0,1,®), as are all computational models relative to @; and so Theorems 1
and 2 also hold for them.

In fact, the familiar computational paradigms for computation on N accept
some fixed, number-theoretic functions @ as givens (the successor and predeces-
sor, equality, addition, etc.), and they also assume some “computational con-
structs” which are characteristic of them and independent of @, e.g., branching,
recursion, reading from and writing to registers or stacks, higher-type logical
operations like A-abstraction and S-conversion, etc. In [7, 8] it is argued that all
algorithms from given operations can be faithfully represented by suitable re-
cursive programs on the structure determined by the givens: now the results we
have discussed here suggest the following, more concrete interpretation of that
proposal for algorithms from first-order givens on some set A:

Refined Church-Turing Thesis for Algorithms, ([2]). Every algorithm
a from a set @ of partial functions and relations on a set A can be represented
faithfully by a recursive program 3 on some inessential extension B of the partial
algebra A = (A,0,1, D).

If we assume this Thesis, then the Extended Imbedding Test makes it possible
to establish lower bounds for all algorithms from a set of first-order givens & on
A, whenever we can produce the appropriate imbeddings.

References

1. Lou van den Dries. Generating the greatest common divisor, and limitations of
primitive recursive algorithms. Foundations of computational mathematics, 3:297—
324, 2003.

2. Lou van den Dries and Yiannis N. Moschovakis. Is the Euclidean algorithm optimal
among its peers? The Bulletin of Symbolic Logic, 10:390-418, 2004.

3. Lou van den Dries and Yiannis N. Moschovakis. Arithmetic complexity. 2007 in
preparation.

4. G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Clarendon
Press, Oxford, fifth edition (2000). originally published in 1938.

5. D. E. Knuth. The Art of Computer Programming. Fundamental Algorithms.
Addison-Wesley, second edition, 1973.

6. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D Herschberg, editors, Computer programming and formal systems, pages 33-70.
North-Holland, 1963.

7. Yiannis N. Moschovakis. On founding the theory of algorithms. In H. G. Dales and
G. Oliveri, editors, Truth in mathematics, pages 71-104. Clarendon Press, Oxford,
1998.

8. Yiannis N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid,
editors, Mathematics unlimited — 2001 and beyond, pages 919-936. Springer, 2001.



