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Outline

• I will try to give an overview of Descriptive Set Theory (DST) as it
developed (mostly) during the last century;
it will be primarily a historical talk, but I will also emphasize the
substantial foundational aspects of DST

Part A. The beginnings, Lebesgue[1905] – Kondo[1938]

Interlude: Gödel[1938] and Cohen[1963]

Part B. Enters Recursion Theory, Kleene[1943]–

Part C. Going beyond ZFC, Scott[1961]–

Part D. Enter games, Blackwell[1967]–

Epilogue

Yiannis N. Moschovakis: A survey of the origins and development of DST October 1, 2018, 23:23 1/15



Asking the basic question (Lebesgue[1905])
On the functions which are analytically representable

• The context in 1905 is the loss of confidence in Cantor’s (naive)
theory of arbitrary sets caused by the paradoxes

• Lebesgue mistrusts the definition of function f : X → Y as an
arbitrary correspondence (1870’s, Cantor, Dedekind) and adds

if there are real functions f : Rn → R which are not
analytically definable, then it is worth identifying those
which are definable and study their characteristic properties

• Def. A collection S ⊆ P(Rn) is a σ-field in Rn if

(B1) S contains all open balls
(B2) S is closed under countable unions,

⋃
i∈N Ai

(B2) S is closed under countable intersections,
⋂

i∈N Ai

• Def. B(Rn) := the smallest σ-field in Rn (the Borel subsets of Rn)

• Def. f : Rn → R is Borel (measurable) if for every open interval
(a, b) ⊂ R, f −1(a, b) ∈ B(Rn)
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Regularity properties of Borel subsets of Rn

. . . not true of all sets if we assume the Axiom of Choice AC

I Every Borel set is Lebesgue measurable (Lebesgue, a basic fact of
his theory of integration)

I B(Rn) is closed under complementation (Lebesgue, easy, gives a
characterization of B(Rn) as the least collection of subsets of Rn

which contains all open sets and is closed under countable unions
and complementation

I Property P (B): Every uncountable Borel set has a non-empty
perfect subset—and so it is equinumerous with R
(Alexandroff[1916], Hausdorff[1916], difficult)

I Property Baire (B): For every Borel set A ⊆ Rn, there is an open
set A∗ such that the symmetric difference A4A∗ = (A \ A∗) ∪ (A∗ \ A)
is meager—topologically trivial (by the Baire Category Theorem)

. . . and there are many more results of this type
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Legesgue’s seminal error and Suslin’s seminal correction

• The wrong theorem in Lebesgue[1905]: If A ⊆ (Rn × R) is Borel,
then so is its projection to Rn, where

proj(A) = {x ∈ Rn | (∃y)A(x , y)}

• Corollary: Borel equations which have unique solutions have Borel
solutions, i.e., For every Borel function f : Rn × R→ R,

(∀x)(∃!y)[f (x , y) = 0] =⇒ (∃ Borel g : Rn → R)(∀x)[f (x , g(x)) = 0]

• The error was noticed in 1917 by the 23-year old Mikhail Suslin (a
student of Luzin, in Moscow) who first set

• Def. A set A ⊆ Rn is analytic if A = proj(B) for some Borel B ⊆ Rn+1

and then proved the Corollary above and (among many other things):

I There exist analytic sets which are not Borel

I (Suslin’s Thm): A ∈ B(Rn) ⇐⇒ both A and Rn \ A are analytic

I Every uncountable analytic set has a nonempty perfect subset
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The projective hierarchy (Luzin[1925], Sierpinski[1925])

• Def. Σe 1
1(X ) = the analytic subsets of X = Rn; set by induction,

Πe 1
n(X ) = C (Σe 1

n(X )) = {X \ A | A ∈ Σe 1
n(X )},

Σe 1
n+1(X ) = proj(Πe 1

n(X × R)) = {proj(A) | A ∈ Πe 1
n(X × R)}

and also ∆e 1
n(X ) = Σe 1

n(X ) ∩Πe 1
n(X ).

I A ⊆ X is projective if it belongs to one of these families of sets, and

Σe 1
1 Σe 1

2 · · ·
( ( ( (

B = ∆e 1
1 ∆e 1

2 ∆e 1
3 · · ·

( ( ( (
Πe 1

1 Πe 1
2 · · ·
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The Uniformization Theorem
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Figure: P∗ uniformizes P.

I The Uniformization Theorem (Kondo[1938]). Every P ∈ Σe 1
2(X × R)

can be uniformized by some P∗ ∈ Σe 1
2(X × R), i.e.,

P∗ ⊆ P & (∀x)[(∃y)P(x , y) =⇒ (∃!y)P∗(x , y)]
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Interlude: Gödel and Cohen

ZFC : Zermelo-Fraenkel set theory with the Axiom of Choice
CH: Every uncountable A ⊆ R is equinumerous with R

I The following propositions are consistent with ZFC
(Gödel[1938] using the universe L of constructible sets)

(1) CH;

(2) some uncountable Σe 1
2 set A ⊂ R is not Lebesgue measurable;

does not have a non-empty perfect subset; and does not have
the property of Baire

(3) For k ≥ 2, every Σe 1
k set A ⊆ Rn+1 can be uniformized by a

Σe 1
k set A∗ ⊆ Rn+1

I CH is independent of ZFC (Cohen[1963], using forcing)

• Following Gödel[1938] and Cohen[1963], an immense body of
consistency and independence results about ZFC has been created,
showing in particular that no interesting property of Σe 1

k with
k ≥ 3 can be decided in ZFC
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Arithmetical relations on N = {0, 1, . . .}
• Def (Kleene[1943]). A relation P ⊆ Nn is arithmetical if

P(x) ⇐⇒ (∃y1)(∀y2)(∃y3) · · · (Qnyn)R(x , y1, . . . , yn)

where R(x , y1, . . . , yn) is recursive (Turing computable), e.g.,

R(x), (∃y1)R(x , y1), (∃y1)(∀y2)R(x , y1, y2), . . .

• These fall into a hierarchy which measures the complexity (degree of
undecidability) of all relations on N which are first-order definable
in the standard model N = (N, 0, 1, +, ·) of Peano arithmetic

• The “simplest” non-arithmetical relation on N is the truth set of N,

Truth(N) =
{

e ∈ N | e is the code (Gödel number)

of a sentence θ which is true in N
}

• With three articles published in 1955, Kleene initiated a deep study
of the relations on N which are 2nd -order definable in N
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The hierarchy of 2nd -order definable relations on N
• N = the set of all infinite sequences α : N→ N (Baire space) and

N(2) = (N,N , 0, 1,+, ·, (s, α) 7→ α(s)) = 2nd -order arithmetic,

• Let X = X1 × · · · × Xn where each Xi is N or N , e.g., N,N × N, etc.

• Def. A set A ⊆ X is Σ1
1 if A = proj(B) for some arithmetical B ⊆ X ×N

(definable without quantifiers over N ); and then, by induction on n,

Π1
n(X ) = C (Σ1

n(X )) = {X \ A | A ∈ Σ1
n(X )},

Σ1
n+1(X ) = proj(Π1

n(X ×N )) = {proj(A) | A ∈ Π1
n(X ×N )}

and also ∆1
n(X ) = Σ1

n(X ) ∩ Π1
n(X ).

Σ1
1 Σ1

2 · · ·
( ( ( (

? = ∆1
1 ∆1

2 ∆1
3 · · ·

( ( ( (
Π1

1 Π1
2 · · ·
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The hyperarithmetical sets and Kleene’s Theorem

• Def. A coded family of subsets of N is a pair (π,S) such that

(C1) S ⊂ P(N)
(C2) The coding π is a surjection π : I →→S of some I ⊆ N onto S

• A ∈ S with code i ⇐⇒ [i ∈ I & π(i) = A]

• Notation: ϕe : N ⇀ N is the recursive partial function with code e

• Def. An effective σ-field in N is a coded family (π,S) such that for
suitable recursive partial functions c1, c2, c3,

(H1) c1 is total, and every singleton {n} is in S with code c1(n);
(H2) if ϕe is total and for every i , ϕe(i) is a code of some Ai ∈ S,

then c2(e)↓ and is a code of
⋃

i∈N Ai ;
(H3) if ϕe is total and for every i , ϕe(i) is a code of some Ai ∈ S,

then c2(e)↓ and is a code of
⋂

i∈N Ai

I (Essentially Kleene[1955]). There is an effective σ-field

(πHYP, HYP) such that for every effective σ-field (π,S), HYP ⊆ S
I (Kleene’s Theorem, 1955). ∆1

1 = HYP
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Effective Descriptive Set Theory
Σe 1

1 Σe 1
2 · · ·

( ( ( (
B = ∆e 1

1 ∆e 1
2 ∆e 1

3 · · ·
( ( ( (

(Rn) Πe 1
1 Πe 1

2 · · ·

Σ1
1 Σ1

2 · · ·
( ( ( (

HYP = ∆1
1 ∆1

2 ∆1
3 · · ·

( ( ( (
(Nn ×N k) Π1

1 Π1
2 · · ·

• First conceived as analogies (Addison, Mostowski, 1959), these two
theories merged in Effective DST, on recursive Polish spaces

• Codings—mostly in N ; structural results about families of sets in
addition to regularity results about sets; use of effective methods
to prove “classical” results (about projective sets)
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Going beyond ZFC: MC

• ZFC does not answer many natural questions about sets, so we can:

(1): Treat it like any other axiomatic theory, e.g., the theory of
rings, and study various models of it with interesting properties,or
(2): look for strengthening ZFC by adding axioms which are
plausibly true of the universe of sets as we understand it

• The most promising candidates for (2) were large cardinal axioms,
which postulate the existence of sets which are

• Def. MC : there exists a measurable cardinal

I (Scott[1961]). If MC, then there exists a set which is not constructible

I (Silver[1973], Rowbottom[1971]). If MC, then there are only
countably many constructible real numbers

I (Solovay[1969]) If MC, then every Σe 1
2 set A ⊆ R is Lebesgue

measurable, has the property of Baire, and either it is countable or
has a non-empty perfect subset

• MC does not prove anything important about sets in Σe 1
k for k ≥ 3
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Games (patient) people play

• Blackwell[1967] gives a new proof of a basic property of analytic
sets using a simple result about games, and many who learn of it
see immediately that it leads to a powerful new axiom which
answers many open problems about projective sets

• Given a set A ⊆ N , consider the infinite game of perfect
information G (A) which is played on N as follows:

I : a0 a2 a4 · · ·
II : a1 a3 a5 · · ·

• At the end of time, a sequence α = (a0, a1, a2, . . .) has been defined

• I wins if α ∈ A, otherwise II wins

• Def. A is determined if either player I or player II has a winning strategy

I (Gayle-Stewart[1953]). Every open set is determined

I (Gayle-Stewart[1953], using AC). Some A ⊂ N is not determined
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Projective Determinacy

• Axiom of Projective Determinacy (PD) Every projective set is determined

• PD is not known to be inconsistent with ZFC

I (Mycielski-Steinhaus[1962], Mycielski[1964,1966]) (PD) Every
projective set is Lebesgue measurable and has property P and the
property of Baire

• PD solves a great number of problems for projective sets which
cannot be decided in ZFC or ZFC + MC (Addison, Martin, ynm),
Harrington, Hjorth, Kechris, Louveau, Solovay, Steel, Woodin,
. . . 1967 —)

I (PD, n ≥ 1) (ynm[1971] Every Σe 1
2n set can be uniformized by a

Σe 1
2n set; and every Πe 1

2n+1 set can be uniformized by a Πe 1
2n+1 set

• The structure of the projective hierarchy is very different under PD
from that in Gödel’s constructible universe L
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Proving PD

• Proofs of determinacy are very difficult, and there are no intrinsic
arguments why it should be true; in the beginning, the only
evidence for it was extrinsic, i.e., it came from its consequences

I (Martin[1975]) Every Borel set is determined

I (Martin-Steel[1988]) PD can be proved from suitable (fairly weak)
large cardinal axioms (Woodin cardinals)
(This was substantially strengthened by Woodin)

EPILOGUE

• Starting with Harrington-Kechris-Louveau[1990], the most important
results in DST have been applications to many areas of mathematics
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